About the Project

inhomogeneous differential equations

AdvancedHelp

(0.002 seconds)

1—10 of 18 matching pages

1: 1.13 Differential Equations
§1.13(iii) Inhomogeneous Equations
Variation of Parameters
2: 11.13 Methods of Computation
A comprehensive approach is to integrate the defining inhomogeneous differential equations (11.2.7) and (11.2.9) numerically, using methods described in §3.7. …
3: 3.7 Ordinary Differential Equations
If h = 0 the differential equation is homogeneous, otherwise it is inhomogeneous. … … The latter is especially useful if the endpoint b of 𝒫 is at , or if the differential equation is inhomogeneous. …
4: 11.9 Lommel Functions
The inhomogeneous Bessel differential equationFor uniform asymptotic expansions, for large ν and fixed μ = 1 , 0 , 1 , 2 , , of solutions of the inhomogeneous modified Bessel differential equation that corresponds to (11.9.1) see Olver (1997b, pp. 388–390). …
5: Bibliography O
  • A. B. Olde Daalhuis (2004b) On higher-order Stokes phenomena of an inhomogeneous linear ordinary differential equation. J. Comput. Appl. Math. 169 (1), pp. 235–246.
  • 6: 2.8 Differential Equations with a Parameter
    For error bounds, extensions to pure imaginary or complex u , an extension to inhomogeneous differential equations, and examples, see Olver (1997b, Chapter 10). …
    7: 11.10 Anger–Weber Functions
    The Anger and Weber functions satisfy the inhomogeneous Bessel differential equation
    8: 11.2 Definitions
    §11.2(ii) Differential Equations
    9: 9.12 Scorer Functions
    9.12.4 Gi ( z ) = Bi ( z ) z Ai ( t ) d t + Ai ( z ) 0 z Bi ( t ) d t ,
    9.12.5 Hi ( z ) = Bi ( z ) z Ai ( t ) d t Ai ( z ) z Bi ( t ) d t .
    9.12.19 Gi ( x ) = 1 π 0 sin ( 1 3 t 3 + x t ) d t , x .
    9.12.20 Hi ( z ) = 1 π 0 exp ( 1 3 t 3 + z t ) d t ,
    9.12.21 Gi ( z ) = 1 π 0 exp ( 1 3 t 3 1 2 z t ) cos ( 1 2 3 z t + 2 3 π ) d t .
    10: 9.10 Integrals
    9.10.1 z Ai ( t ) d t = π ( Ai ( z ) Gi ( z ) Ai ( z ) Gi ( z ) ) ,
    9.10.2 z Ai ( t ) d t = π ( Ai ( z ) Hi ( z ) Ai ( z ) Hi ( z ) ) ,
    9.10.3 z Bi ( t ) d t = 0 z Bi ( t ) d t = π ( Bi ( z ) Gi ( z ) Bi ( z ) Gi ( z ) ) = π ( Bi ( z ) Hi ( z ) Bi ( z ) Hi ( z ) ) .