About the Project

incomplete gamma functions

AdvancedHelp

(0.009 seconds)

31—40 of 68 matching pages

31: 8.25 Methods of Computation
Expansions involving incomplete gamma functions often require the generation of sequences P ( a + n , x ) , Q ( a + n , x ) , or γ ( a + n , x ) for fixed a and n = 0 , 1 , 2 , . …
32: 8.19 Generalized Exponential Integral
§8.19(i) Definition and Integral Representations
8.19.1 E p ( z ) = z p 1 Γ ( 1 p , z ) .
33: Bibliography N
  • G. Nemes (2015c) The resurgence properties of the incomplete gamma function II. Stud. Appl. Math. 135 (1), pp. 86–116.
  • G. Nemes (2016) The resurgence properties of the incomplete gamma function, I. Anal. Appl. (Singap.) 14 (5), pp. 631–677.
  • E. Neuman (2013) Inequalities and bounds for the incomplete gamma function. Results Math. 63 (3-4), pp. 1209–1214.
  • 34: 9.10 Integrals
    9.10.15 0 e p t Ai ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) + Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) ) , p > 0 ,
    9.10.16 0 e p t Bi ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) ) , p > 0 .
    For the confluent hypergeometric function F 1 1 and the incomplete gamma function Γ see §§13.1, 13.2, and 8.2(i). …
    35: Bibliography G
  • W. Gautschi (1979a) Algorithm 542: Incomplete gamma functions. ACM Trans. Math. Software 5 (4), pp. 482–489.
  • W. Gautschi (1959b) Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 (1), pp. 77–81.
  • W. Gautschi (1979b) A computational procedure for incomplete gamma functions. ACM Trans. Math. Software 5 (4), pp. 466–481.
  • W. Gautschi (1998) The incomplete gamma functions since Tricomi. In Tricomi’s Ideas and Contemporary Applied Mathematics (Rome/Turin, 1997), Atti Convegni Lincei, Vol. 147, pp. 203–237.
  • W. Gautschi (1999) A note on the recursive calculation of incomplete gamma functions. ACM Trans. Math. Software 25 (1), pp. 101–107.
  • 36: Bibliography J
  • L. Jacobsen, W. B. Jones, and H. Waadeland (1986) Further results on the computation of incomplete gamma functions. In Analytic Theory of Continued Fractions, II (Pitlochry/Aviemore, 1985), W. J. Thron (Ed.), Lecture Notes in Math. 1199, pp. 67–89.
  • W. B. Jones and W. J. Thron (1985) On the computation of incomplete gamma functions in the complex domain. J. Comput. Appl. Math. 12/13, pp. 401–417.
  • 37: Bibliography Q
  • F. Qi and J. Mei (1999) Some inequalities of the incomplete gamma and related functions. Z. Anal. Anwendungen 18 (3), pp. 793–799.
  • 38: Richard B. Paris
    39: Bibliography D
  • A. R. DiDonato and A. H. Morris (1986) Computation of the incomplete gamma function ratios and their inverses. ACM Trans. Math. Software 12 (4), pp. 377–393.
  • A. R. DiDonato and A. H. Morris (1987) Algorithm 654: Fortran subroutines for computing the incomplete gamma function ratios and their inverses. ACM Trans. Math. Software 13 (3), pp. 318–319.
  • T. M. Dunster, R. B. Paris, and S. Cang (1998) On the high-order coefficients in the uniform asymptotic expansion for the incomplete gamma function. Methods Appl. Anal. 5 (3), pp. 223–247.
  • T. M. Dunster (1996a) Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function. Proc. Roy. Soc. London Ser. A 452, pp. 1331–1349.
  • 40: 8.21 Generalized Sine and Cosine Integrals
    With γ and Γ denoting here the general values of the incomplete gamma functions8.2(i)), we define
    8.21.1 ci ( a , z ) ± i si ( a , z ) = e ± 1 2 π i a Γ ( a , z e 1 2 π i ) ,
    8.21.2 Ci ( a , z ) ± i Si ( a , z ) = e ± 1 2 π i a γ ( a , z e 1 2 π i ) .
    When ph z = 0 (and when a 1 , 3 , 5 , , in the case of Si ( a , z ) , or a 0 , 2 , 4 , , in the case of Ci ( a , z ) ) the principal values of si ( a , z ) , ci ( a , z ) , Si ( a , z ) , and Ci ( a , z ) are defined by (8.21.1) and (8.21.2) with the incomplete gamma functions assuming their principal values (§8.2(i)). … Properties of the four functions that are stated below in §§8.21(iii) and 8.21(iv) follow directly from the definitions given above, together with properties of the incomplete gamma functions given earlier in this chapter. …