About the Project

incomplete beta functions

AdvancedHelp

(0.004 seconds)

21—28 of 28 matching pages

21: 19.1 Special Notation
(For other notation see Notation for the Special Functions.) … All derivatives are denoted by differentials, not by primes. The first set of main functions treated in this chapter are Legendre’s complete integrals …of the first, second, and third kinds, respectively, and Legendre’s incomplete integrals … The first three functions are incomplete integrals of the first, second, and third kinds, and the cel function includes complete integrals of all three kinds.
22: Bibliography C
  • M. A. Chaudhry, N. M. Temme, and E. J. M. Veling (1996) Asymptotics and closed form of a generalized incomplete gamma function. J. Comput. Appl. Math. 67 (2), pp. 371–379.
  • M. A. Chaudhry and S. M. Zubair (1994) Generalized incomplete gamma functions with applications. J. Comput. Appl. Math. 55 (1), pp. 99–124.
  • M. A. Chaudhry and S. M. Zubair (2001) On a Class of Incomplete Gamma Functions with Applications. Chapman & Hall/CRC, Boca Raton, FL.
  • R. Cicchetti and A. Faraone (2004) Incomplete Hankel and modified Bessel functions: A class of special functions for electromagnetics. IEEE Trans. Antennas and Propagation 52 (12), pp. 3373–3389.
  • E. D. Constantinides and R. J. Marhefka (1993) Efficient and accurate computation of the incomplete Airy functions. Radio Science 28 (4), pp. 441–457.
  • 23: 19.16 Definitions
    §19.16(ii) R a ( 𝐛 ; 𝐳 )
    The R -function is often used to make a unified statement of a property of several elliptic integrals. …where B ( x , y ) is the beta function5.12) and … Each of the four complete integrals (19.16.20)–(19.16.23) can be integrated to recover the incomplete integral: …
    24: 19.14 Reduction of General Elliptic Integrals
    19.14.1 1 x d t t 3 1 = 3 1 / 4 F ( ϕ , k ) , cos ϕ = 3 + 1 x 3 1 + x , k 2 = 2 3 4 .
    19.14.2 x 1 d t 1 t 3 = 3 1 / 4 F ( ϕ , k ) , cos ϕ = 3 1 + x 3 + 1 x , k 2 = 2 + 3 4 .
    19.14.4 y x d t ( a 1 + b 1 t 2 ) ( a 2 + b 2 t 2 ) = 1 γ α F ( ϕ , k ) , k 2 = ( γ β ) / ( γ α ) .
    In (19.14.4) 0 y < x , each quadratic polynomial is positive on the interval ( y , x ) , and α , β , γ is a permutation of 0 , a 1 b 2 , a 2 b 1 (not all 0 by assumption) such that α β γ . … Legendre (1825–1832) showed that every elliptic integral can be expressed in terms of the three integrals in (19.1.2) supplemented by algebraic, logarithmic, and trigonometric functions. …
    25: Errata
  • Equation (18.12.2)
    18.12.2 𝐅 1 0 ( α + 1 ; ( x 1 ) z 2 ) 𝐅 1 0 ( β + 1 ; ( x + 1 ) z 2 ) = ( 1 2 ( 1 x ) z ) 1 2 α J α ( 2 ( 1 x ) z ) ( 1 2 ( 1 + x ) z ) 1 2 β I β ( 2 ( 1 + x ) z ) = n = 0 P n ( α , β ) ( x ) Γ ( n + α + 1 ) Γ ( n + β + 1 ) z n

    This equation was updated to include on the left-hand side, its definition in terms of a product of two 𝐅 1 0 functions.

  • Equations (31.3.10), (31.3.11)
    31.3.10 z α H ( 1 a , q a α ( β ϵ ) α a ( β δ ) ; α , α γ + 1 , α β + 1 , δ ; 1 z )
    31.3.11 z β H ( 1 a , q a β ( α ϵ ) β a ( α δ ) ; β , β γ + 1 , β α + 1 , δ ; 1 z )

    In both equations, the second entry in the H has been corrected with an extra minus sign.

  • Subsection 20.10(ii)

    In the first sentence of this subsection, the constraint sinh | β | has been replaced with | β | + | β | .

  • Paragraph Mellin–Barnes Integrals (in §8.6(ii))

    The descriptions for the paths of integration of the Mellin-Barnes integrals (8.6.10)–(8.6.12) have been updated. The description for (8.6.11) now states that the path of integration is to the right of all poles. Previously it stated incorrectly that the path of integration had to separate the poles of the gamma function from the pole at s = 0 . The paths of integration for (8.6.10) and (8.6.12) have been clarified. In the case of (8.6.10), it separates the poles of the gamma function from the pole at s = a for γ ( a , z ) . In the case of (8.6.12), it separates the poles of the gamma function from the poles at s = 0 , 1 , 2 , .

    Reported 2017-07-10 by Kurt Fischer.

  • Equation (8.12.5)

    To be consistent with the notation used in (8.12.16), Equation (8.12.5) was changed to read

    8.12.5 e ± π i a 2 i sin ( π a ) Q ( a , z e ± π i ) = ± 1 2 erfc ( ± i η a / 2 ) i T ( a , η )
  • 26: 13.7 Asymptotic Expansions for Large Argument
    §13.7 Asymptotic Expansions for Large Argument
    §13.7(ii) Error Bounds
    §13.7(iii) Exponentially-Improved Expansion
    13.7.12 G p ( z ) = e z 2 π Γ ( p ) Γ ( 1 p , z ) .
    For extensions to hyperasymptotic expansions see Olde Daalhuis and Olver (1995a).
    27: Bibliography
  • M. M. Agrest and M. S. Maksimov (1971) Theory of Incomplete Cylindrical Functions and Their Applications. Springer-Verlag, Berlin.
  • W. A. Al-Salam and M. E. H. Ismail (1994) A q -beta integral on the unit circle and some biorthogonal rational functions. Proc. Amer. Math. Soc. 121 (2), pp. 553–561.
  • G. Allasia and R. Besenghi (1987b) Numerical calculation of incomplete gamma functions by the trapezoidal rule. Numer. Math. 50 (4), pp. 419–428.
  • H. Alzer (1997b) On some inequalities for the incomplete gamma function. Math. Comp. 66 (218), pp. 771–778.
  • H. Appel (1968) Numerical Tables for Angular Correlation Computations in α -, β - and γ -Spectroscopy: 3 j -, 6 j -, 9 j -Symbols, F- and Γ -Coefficients. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag.
  • 28: 19.33 Triaxial Ellipsoids
    where α , β , γ are dimensionless positive constants. The contours of constant density are a family of similar, rather than confocal, ellipsoids. …
    19.33.11 U = 1 2 ( α β γ ) 2 R F ( α 2 , β 2 , γ 2 ) 0 ( g ( r ) ) 2 d r ,
    where …