About the Project

imaginary-modulus%20transformations

AdvancedHelp

(0.003 seconds)

21—30 of 279 matching pages

21: 23.5 Special Lattices
For the case ω 3 = e π i / 3 ω 1 see §23.5(v). … This occurs when ω 1 is real and positive and ω 3 = e π i / 3 ω 1 . …
See accompanying text
Figure 23.5.2: Equianharmonic lattice. 2 ω 3 = e π i / 3 2 ω 1 , 2 ω 1 2 ω 3 = e π i / 3 2 ω 1 . Magnify
23.5.7 e 1 = e 2 π i / 3 e 3 = e 2 π i / 3 e 2 = ( Γ ( 1 3 ) ) 6 2 14 / 3 π 2 ω 1 2 ,
22: 4.4 Special Values and Limits
4.4.6 e ± π i / 2 = ± i ,
4.4.8 e ± π i / 3 = 1 2 ± i 3 2 ,
4.4.9 e ± 2 π i / 3 = 1 2 ± i 3 2 ,
4.4.10 e ± π i / 4 = 1 2 ± i 1 2 ,
4.4.11 e ± 3 π i / 4 = 1 2 ± i 1 2 ,
23: 10.5 Wronskians and Cross-Products
10.5.3 𝒲 { J ν ( z ) , H ν ( 1 ) ( z ) } = J ν + 1 ( z ) H ν ( 1 ) ( z ) J ν ( z ) H ν + 1 ( 1 ) ( z ) = 2 i / ( π z ) ,
10.5.4 𝒲 { J ν ( z ) , H ν ( 2 ) ( z ) } = J ν + 1 ( z ) H ν ( 2 ) ( z ) J ν ( z ) H ν + 1 ( 2 ) ( z ) = 2 i / ( π z ) ,
10.5.5 𝒲 { H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) } = H ν + 1 ( 1 ) ( z ) H ν ( 2 ) ( z ) H ν ( 1 ) ( z ) H ν + 1 ( 2 ) ( z ) = 4 i / ( π z ) .
24: 9.7 Asymptotic Expansions
Numerical values of χ ( n ) are given in Table 9.7.1 for n = 1 ( 1 ) 20 to 2D.
Table 9.7.1: χ ( n ) .
n χ ( n ) n χ ( n ) n χ ( n ) n χ ( n )
5 2.95 10 4.06 15 4.94 20 5.68
9.7.13 Bi ( z e ± π i / 3 ) 2 π e ± π i / 6 z 1 / 4 ( cos ( ζ 1 4 π 1 2 i ln 2 ) k = 0 ( 1 ) k u 2 k ζ 2 k + sin ( ζ 1 4 π 1 2 i ln 2 ) k = 0 ( 1 ) k u 2 k + 1 ζ 2 k + 1 ) , | ph z | 2 3 π δ ,
9.7.14 Bi ( z e ± π i / 3 ) 2 π e π i / 6 z 1 / 4 ( sin ( ζ 1 4 π 1 2 i ln 2 ) k = 0 ( 1 ) k v 2 k ζ 2 k + cos ( ζ 1 4 π 1 2 i ln 2 ) k = 0 ( 1 ) k v 2 k + 1 ζ 2 k + 1 ) , | ph z | 2 3 π δ .
25: 7.10 Derivatives
7.10.2 w ( z ) = 2 z w ( z ) + ( 2 i / π ) ,
26: 10.63 Recurrence Relations and Derivatives
f ν 1 ( x ) + f ν + 1 ( x ) = ( ν 2 / x ) ( f ν ( x ) g ν ( x ) ) ,
f ν ( x ) = ( 1 / 2 ) ( f ν 1 ( x ) + g ν 1 ( x ) ) ( ν / x ) f ν ( x ) ,
f ν ( x ) = ( 1 / 2 ) ( f ν + 1 ( x ) + g ν + 1 ( x ) ) + ( ν / x ) f ν ( x ) .
p ν + 1 = p ν 1 ( 4 ν / x ) r ν ,
r ν + 1 = ( ( ν + 1 ) / x ) p ν + 1 + q ν ,
27: 10.20 Uniform Asymptotic Expansions for Large Order
10.20.6 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 2 e π i / 3 ( 4 ζ 1 z 2 ) 1 4 ( Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 1 3 k = 0 A k ( ζ ) ν 2 k + e ± 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 5 3 k = 0 B k ( ζ ) ν 2 k ) ,
10.20.9 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 4 e 2 π i / 3 z ( 1 z 2 4 ζ ) 1 4 ( e 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 4 3 k = 0 C k ( ζ ) ν 2 k + Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 2 3 k = 0 D k ( ζ ) ν 2 k ) ,
See accompanying text
Figure 10.20.2: ζ -plane. E 1 and E 2 are the points e π i / 3 ( 3 π / 2 ) 2 / 3 . Magnify
28: 10.19 Asymptotic Expansions for Large Order
10.19.9 H ν ( 1 ) ( ν + a ν 1 3 ) H ν ( 2 ) ( ν + a ν 1 3 ) } 2 4 3 ν 1 3 e π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 P k ( a ) ν 2 k / 3 + 2 5 3 ν e ± π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 Q k ( a ) ν 2 k / 3 ,
10.19.13 H ν ( 1 ) ( ν + a ν 1 3 ) H ν ( 2 ) ( ν + a ν 1 3 ) } 2 5 3 ν 2 3 e ± π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 R k ( a ) ν 2 k / 3 + 2 4 3 ν 4 3 e π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 S k ( a ) ν 2 k / 3 ,
29: 9.13 Generalized Airy Functions
9.13.18 w = U m ( t e 2 j π i / m ) , j = 0 , ± 1 , ± 2 , .
A 2 ( z , 0 ) = e 2 π i / 3 Ai ( z e 2 π i / 3 ) ,
A 3 ( z , 0 ) = e 2 π i / 3 Ai ( z e 2 π i / 3 ) ,
A 2 ( z , p ) = e 2 ( p 1 ) π i / 3 A 1 ( z e 2 π i / 3 , p ) ,
A 3 ( z , p ) = e 2 ( p 1 ) π i / 3 A 1 ( z e 2 π i / 3 , p ) .
30: 23.22 Methods of Computation
  • (c)

    If c = 0 , then

    23.22.3 2 ω 1 = 2 e π i / 3 ω 3 = ( Γ ( 1 3 ) ) 3 2 π d 1 / 6 .

    There are 6 possible pairs ( 2 ω 1 , 2 ω 3 ), corresponding to the 6 rotations of a lattice of equilateral triangles. The equianharmonic case occurs when d > 0 and ω 1 > 0 .

  • Then α = 1 2 i , β = 1 , γ = 2 i ; k 2 = ( 7 + 6 i ) / 17 , and k 2 = ( 10 6 i ) / 17 . …