About the Project

hyperbolic cases

AdvancedHelp

(0.003 seconds)

31—40 of 47 matching pages

31: 10.43 Integrals
β–Ί
10.43.2 z Ξ½ ⁒ 𝒡 Ξ½ ⁑ ( z ) ⁒ d z = Ο€ 1 2 ⁒ 2 Ξ½ 1 ⁒ Ξ“ ⁑ ( Ξ½ + 1 2 ) ⁒ z ⁒ ( 𝒡 Ξ½ ⁑ ( z ) ⁒ 𝐋 Ξ½ 1 ⁑ ( z ) 𝒡 Ξ½ 1 ⁑ ( z ) ⁒ 𝐋 Ξ½ ⁑ ( z ) ) , Ξ½ 1 2 .
β–Ί
10.43.12 Ki α ⁑ ( x ) = 0 e x ⁒ cosh ⁑ t ( cosh ⁑ t ) α ⁒ d t , x > 0 .
β–Ί
10.43.21 0 sin ⁑ ( a ⁒ t ) ⁒ K 0 ⁑ ( t ) ⁒ d t = arcsinh ⁑ a ( 1 + a 2 ) 1 2 , | ⁑ a | < 1 .
β–Ί
10.43.25 0 K Ξ½ ⁑ ( b ⁒ t ) ⁒ exp ⁑ ( p 2 ⁒ t 2 ) ⁒ d t = Ο€ 4 ⁒ p ⁒ sec ⁑ ( 1 2 ⁒ Ο€ ⁒ Ξ½ ) ⁒ exp ⁑ ( b 2 8 ⁒ p 2 ) ⁒ K 1 2 ⁒ Ξ½ ⁑ ( b 2 8 ⁒ p 2 ) , | ⁑ Ξ½ | < 1 , ⁑ ( p 2 ) > 0 .
β–Ί
10.43.30 f ⁑ ( y ) = 2 ⁒ y Ο€ 2 ⁒ sinh ⁑ ( Ο€ ⁒ y ) ⁒ 0 g ⁑ ( x ) x ⁒ K i ⁒ y ⁑ ( x ) ⁒ d x .
32: 29.5 Special Cases and Limiting Forms
§29.5 Special Cases and Limiting Forms
β–Ί
29.5.5 lim k 1 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) 𝐸𝑐 Ξ½ m ⁑ ( 0 , k 2 ) = lim k 1 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) 𝐸𝑠 Ξ½ m + 1 ⁑ ( 0 , k 2 ) = 1 ( cosh ⁑ z ) ΞΌ ⁒ F ⁑ ( 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ , 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ + 1 2 1 2 ; tanh 2 ⁑ z ) , m even,
β–Ί
29.5.6 lim k 1 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) d 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) / d z | z = 0 = lim k 1 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) d 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) / d z | z = 0 = tanh ⁑ z ( cosh ⁑ z ) ΞΌ ⁒ F ⁑ ( 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ + 1 2 , 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ + 1 3 2 ; tanh 2 ⁑ z ) , m odd,
33: 10.22 Integrals
β–Ί
10.22.47 0 t ν ⁒ Y ν ⁑ ( a ⁒ t ) t 2 + b 2 ⁒ d t = b ν 1 ⁒ K ν ⁑ ( a ⁒ b ) , a > 0 , ⁑ b > 0 , 1 2 < ⁑ ν < 5 2 .
β–Ί
10.22.48 0 J ΞΌ ⁑ ( x ⁒ cosh ⁑ Ο• ) ⁒ ( cosh ⁑ Ο• ) 1 ΞΌ ⁒ ( sinh ⁑ Ο• ) 2 ⁒ Ξ½ + 1 ⁒ d Ο• = 2 Ξ½ ⁒ Ξ“ ⁑ ( Ξ½ + 1 ) ⁒ x Ξ½ 1 ⁒ J ΞΌ Ξ½ 1 ⁑ ( x ) , x > 0 , ⁑ Ξ½ > 1 , ⁑ ΞΌ > 2 ⁒ ⁑ Ξ½ + 1 2 .
β–Ί
Weber–Schafheitlin Discontinuous Integrals, including Special Cases
β–Ί
10.22.65 0 J 0 ⁑ ( a ⁒ t ) ⁒ ( J 0 ⁑ ( b ⁒ t ) J 0 ⁑ ( c ⁒ t ) ) ⁒ d t t = { 0 , 0 b < a , 0 < c a , ln ⁑ ( c / a ) , 0 b < a c .
β–Ί
10.22.72 0 J ΞΌ ⁑ ( a ⁒ t ) ⁒ J Ξ½ ⁑ ( b ⁒ t ) ⁒ J Ξ½ ⁑ ( c ⁒ t ) ⁒ t 1 ΞΌ ⁒ d t = ( b ⁒ c ) ΞΌ 1 ⁒ sin ⁑ ( ( ΞΌ Ξ½ ) ⁒ Ο€ ) ⁒ ( sinh ⁑ Ο‡ ) ΞΌ 1 2 ( 1 2 ⁒ Ο€ 3 ) 1 2 ⁒ a ΞΌ ⁒ e ( ΞΌ 1 2 ) ⁒ i ⁒ Ο€ ⁒ Q Ξ½ 1 2 1 2 ΞΌ ⁑ ( cosh ⁑ Ο‡ ) , ⁑ ΞΌ > 1 2 , ⁑ Ξ½ > 1 , a > b + c , cosh ⁑ Ο‡ = ( a 2 b 2 c 2 ) / ( 2 ⁒ b ⁒ c ) .
34: 22.19 Physical Applications
β–ΊWe consider the case of a particle of mass 1, initially held at rest at displacement a from the origin and then released at time t = 0 . The subsequent position as a function of time, x ⁑ ( t ) , for the three cases is given with results expressed in terms of a and the dimensionless parameter Ξ· = 1 2 ⁒ Ξ² ⁒ a 2 . β–Ί
Case I: V ⁑ ( x ) = 1 2 ⁒ x 2 + 1 4 ⁒ β ⁒ x 4
β–Ί
Case II: V ⁑ ( x ) = 1 2 ⁒ x 2 1 4 ⁒ β ⁒ x 4
β–Ί
Case III: V ⁑ ( x ) = 1 2 ⁒ x 2 + 1 4 ⁒ β ⁒ x 4
35: 36.6 Scaling Relations
§36.6 Scaling Relations
β–Ί
Table 36.6.1: Special cases of scaling exponents for cuspoids.
β–Ί β–Ίβ–Ί
singularity K β K γ 1 ⁒ K γ 2 ⁒ K γ 3 ⁒ K γ K
β–Ί
36: 11.5 Integral Representations
β–Ί
11.5.3 𝐊 0 ⁑ ( z ) = 2 Ο€ ⁒ 0 e z ⁒ sinh ⁑ t ⁒ d t , ⁑ z > 0 ,
β–Ί
11.5.6 𝐋 Ξ½ ⁑ ( z ) = 2 ⁒ ( 1 2 ⁒ z ) Ξ½ Ο€ ⁒ Ξ“ ⁑ ( Ξ½ + 1 2 ) ⁒ 0 Ο€ / 2 sinh ⁑ ( z ⁒ cos ⁑ ΞΈ ) ⁒ ( sin ⁑ ΞΈ ) 2 ⁒ Ξ½ ⁒ d ΞΈ , ⁑ Ξ½ > 1 2 ,
37: 4.15 Graphics
β–Ί
β–Ί
See accompanying text
β–Ί
β–Ίβ–Ίβ–Ί
A B C C ¯ D D ¯ E E ¯ F
w 0 1 cosh ⁑ r + i ⁒ 0 cosh ⁑ r i ⁒ 0 i ⁒ sinh ⁑ r i ⁒ sinh ⁑ r cosh ⁑ r + i ⁒ 0 cosh ⁑ r i ⁒ 0 1
β–Ί
Figure 4.15.7: Conformal mapping of sine and inverse sine. … Magnify
β–Ίthey can be obtained by translating the surfaces shown in Figures 4.15.8, 4.15.10, 4.15.12 by 1 2 ⁒ Ο€ parallel to the x -axis, and adjusting the phase coloring in the case of Figure 4.15.10. …
38: 13.18 Relations to Other Functions
β–Ί
13.18.1 M 0 , 1 2 ⁑ ( 2 ⁒ z ) = 2 ⁒ sinh ⁑ z ,
β–ΊSpecial cases are the error functions … β–ΊSpecial cases of §13.18(iv) are as follows. …
39: 13.6 Relations to Other Functions
β–Ί
13.6.2 M ⁑ ( 1 , 2 , 2 ⁒ z ) = e z z ⁒ sinh ⁑ z ,
β–ΊSpecial cases are the error functions … β–Ίand in the case that b 2 ⁒ a is an integer we have …Note that (13.6.11_1) and (13.6.11_2) are special cases of (13.11.1) and (13.11.2), respectively … β–ΊSpecial cases of §13.6(iv) are as follows. …
40: 36.12 Uniform Approximation of Integrals
β–ΊIn the cuspoid case (one integration variable) … β–Ί
§36.12(ii) Special Case
β–ΊFor further information concerning integrals with several coalescing saddle points see Arnol’d et al. (1988), Berry and Howls (1993, 1994), Bleistein (1967), Duistermaat (1974), Ludwig (1966), Olde Daalhuis (2000), and Ursell (1972, 1980).