About the Project

hyperbolic%20umbilic%20catastrophe

AdvancedHelp

(0.001 seconds)

11—20 of 230 matching pages

11: 36.7 Zeros
§36.7(iii) Elliptic Umbilic Canonical Integral
The zeros are lines in 𝐱 = ( x , y , z ) space where ph Ψ ( E ) ( 𝐱 ) is undetermined. …Near z = z n , and for small x and y , the modulus | Ψ ( E ) ( 𝐱 ) | has the symmetry of a lattice with a rhombohedral unit cell that has a mirror plane and an inverse threefold axis whose z and x repeat distances are given by …
§36.7(iv) Swallowtail and Hyperbolic Umbilic Canonical Integrals
The zeros of these functions are curves in 𝐱 = ( x , y , z ) space; see Nye (2007) for Φ 3 and Nye (2006) for Φ ( H ) .
12: 20 Theta Functions
Chapter 20 Theta Functions
13: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 14: Bibliography U
  • T. Uzer, J. T. Muckerman, and M. S. Child (1983) Collisions and umbilic catastrophes. The hyperbolic umbilic canonical diffraction integral. Molecular Phys. 50 (6), pp. 1215–1230.
  • 15: 4.35 Identities
    §4.35 Identities
    §4.35(i) Addition Formulas
    §4.35(ii) Squares and Products
    §4.35(iii) Multiples of the Argument
    §4.35(iv) Real and Imaginary Parts; Moduli
    16: 4.29 Graphics
    §4.29(i) Real Arguments
    See accompanying text
    Figure 4.29.6: Principal values of arccsch x and arcsech x . … Magnify
    §4.29(ii) Complex Arguments
    The conformal mapping w = sinh z is obtainable from Figure 4.15.7 by rotating both the w -plane and the z -plane through an angle 1 2 π , compare (4.28.8). The surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …
    17: 4.28 Definitions and Periodicity
    §4.28 Definitions and Periodicity
    Relations to Trigonometric Functions
    As a consequence, many properties of the hyperbolic functions follow immediately from the corresponding properties of the trigonometric functions.
    Periodicity and Zeros
    The functions sinh z and cosh z have period 2 π i , and tanh z has period π i . …
    18: 4.1 Special Notation
    k , m , n integers.
    The main purpose of the present chapter is to extend these definitions and properties to complex arguments z . … ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. …
    19: Errata
  • Figures 36.3.9, 36.3.10, 36.3.11, 36.3.12

    Scales were corrected in all figures. The interval 8.4 x y 2 8.4 was replaced by 12.0 x y 2 12.0 and 12.7 x + y 2 4.2 replaced by 18.0 x + y 2 6.0 . All plots and interactive visualizations were regenerated to improve image quality.

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.9: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 0 ) | .

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.10: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 1 ) | .

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.11: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 2 ) | .

    See accompanying text See accompanying text
    (a) Density plot. (b) 3D plot.

    Figure 36.3.12: Modulus of hyperbolic umbilic canonical integral function | Ψ ( H ) ( x , y , 3 ) | .

    Reported 2016-09-12 by Dan Piponi.

  • Figures 36.3.18, 36.3.19, 36.3.20, 36.3.21

    The scaling error reported on 2016-09-12 by Dan Piponi also applied to contour and density plots for the phase of the hyperbolic umbilic canonical integrals. Scales were corrected in all figures. The interval 8.4 x y 2 8.4 was replaced by 12.0 x y 2 12.0 and 12.7 x + y 2 4.2 replaced by 18.0 x + y 2 6.0 . All plots and interactive visualizations were regenerated to improve image quality.

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.18: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 0 ) .

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.19: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 1 ) .

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.20: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 2 ) .

    See accompanying text See accompanying text
    (a) Contour plot. (b) Density plot.

    Figure 36.3.21: Phase of hyperbolic umbilic canonical integral ph Ψ ( H ) ( x , y , 3 ) .

    Reported 2016-09-28.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • Equation (36.10.14)
    36.10.14 3 ( 2 Ψ ( E ) x 2 2 Ψ ( E ) y 2 ) + 2 i z Ψ ( E ) x x Ψ ( E ) = 0

    Originally this equation appeared with Ψ ( H ) x in the second term, rather than Ψ ( E ) x .

    Reported 2010-04-02.

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 20: 36.8 Convergent Series Expansions
    §36.8 Convergent Series Expansions
    36.8.3 3 2 / 3 4 π 2 Ψ ( H ) ( 3 1 / 3 𝐱 ) = Ai ( x ) Ai ( y ) n = 0 ( 3 1 / 3 i z ) n c n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n c n ( x ) d n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n d n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 1 ( 3 1 / 3 i z ) n d n ( x ) d n ( y ) n ! ,
    36.8.4 Ψ ( E ) ( 𝐱 ) = 2 π 2 ( 2 3 ) 2 / 3 n = 0 ( i ( 2 / 3 ) 2 / 3 z ) n n ! ( f n ( x + i y 12 1 / 3 , x i y 12 1 / 3 ) ) ,