About the Project

harmonic trapping potentials

AdvancedHelp

(0.003 seconds)

21—30 of 57 matching pages

21: 33.22 Particle Scattering and Atomic and Molecular Spectra
At positive energies E > 0 , ρ 0 , and: … R = m e c α 2 / ( 2 ) . … Both variable sets may be used for attractive and repulsive potentials: the ( ϵ , r ) set cannot be used for a zero potential because this would imply r = 0 for all s , and the ( η , ρ ) set cannot be used for zero energy E because this would imply ρ = 0 always. …
§33.22(vi) Solutions Inside the Turning Point
22: 1.7 Inequalities
§1.7(iii) Means
1.7.7 H G A ,
23: 1.17 Integral and Series Representations of the Dirac Delta
Spherical Harmonics14.30)
1.17.25 δ ( cos θ 1 cos θ 2 ) δ ( ϕ 1 ϕ 2 ) = = 0 m = Y , m ( θ 1 , ϕ 1 ) Y , m ( θ 2 , ϕ 2 ) ¯ .
24: 25.11 Hurwitz Zeta Function
25.11.32 0 a x n ψ ( x ) d x = ( 1 ) n 1 ζ ( n ) + ( 1 ) n H n B n + 1 n + 1 k = 0 n ( 1 ) k ( n k ) H k B k + 1 ( a ) k + 1 a n k + k = 0 n ( 1 ) k ( n k ) ζ ( k , a ) a n k , n = 1 , 2 , , a > 0 ,
where H n are the harmonic numbers:
25.11.33 H n = k = 1 n k 1 .
25: 14.31 Other Applications
§14.31(ii) Conical Functions
These functions are also used in the Mehler–Fock integral transform (§14.20(vi)) for problems in potential and heat theory, and in elementary particle physics (Sneddon (1972, Chapter 7) and Braaksma and Meulenbeld (1967)). …
26: Bibliography Q
  • C. Quesne (2011) Higher-Order SUSY, Exactly Solvable Potentials, and Exceptional Orthogonal Polynomials. Modern Physics Letters A 26, pp. 1843–1852.
  • 27: 1.2 Elementary Algebra
    §1.2(iv) Means
    The geometric mean G and harmonic mean H of n positive numbers a 1 , a 2 , , a n are given by …
    1.2.19 1 H = 1 n ( 1 a 1 + 1 a 2 + + 1 a n ) .
    M ( 1 ) = H ,
    28: 1.9 Calculus of a Complex Variable
    Harmonic Functions
    Mean Value Property
    For u ( z ) harmonic, …
    Poisson Integral
    is harmonic in | z | < R . …
    29: Bibliography C
  • B. C. Carlson and G. S. Rushbrooke (1950) On the expansion of a Coulomb potential in spherical harmonics. Proc. Cambridge Philos. Soc. 46, pp. 626–633.
  • 30: Bibliography T
  • A. Terras (1988) Harmonic Analysis on Symmetric Spaces and Applications. II. Springer-Verlag, Berlin.
  • O. I. Tolstikhin and M. Matsuzawa (2001) Hyperspherical elliptic harmonics and their relation to the Heun equation. Phys. Rev. A 63 (032510), pp. 1–8.
  • T. Ton-That, K. I. Gross, D. St. P. Richards, and P. J. Sally (Eds.) (1995) Representation Theory and Harmonic Analysis. Contemporary Mathematics, Vol. 191, American Mathematical Society, Providence, RI.