About the Project

generalized logarithms

AdvancedHelp

(0.004 seconds)

21—30 of 179 matching pages

21: 14.23 Values on the Cut
14.23.5 𝖰 ν μ ( x ) = 1 2 Γ ( ν + μ + 1 ) ( e μ π i / 2 𝑸 ν μ ( x + i 0 ) + e μ π i / 2 𝑸 ν μ ( x i 0 ) ) ,
14.23.6 𝖰 ν μ ( x ) = e μ π i / 2 Γ ( ν + μ + 1 ) 𝑸 ν μ ( x ± i 0 ) ± 1 2 π i e ± μ π i / 2 P ν μ ( x ± i 0 ) .
22: 2.11 Remainder Terms; Stokes Phenomenon
2.11.5 E p ( z ) = e z z p 1 Γ ( p ) 0 e z t t p 1 1 + t d t
2.11.7 E p ( z ) 2 π i e p π i Γ ( p ) z p 1 + e z z s = 0 ( 1 ) s ( p ) s z s ,
2.11.10 E p ( z ) = e z z s = 0 n 1 ( 1 ) s ( p ) s z s + ( 1 ) n 2 π Γ ( p ) z p 1 F n + p ( z ) ,
2.11.11 F n + p ( z ) = e z 2 π 0 e z t t n + p 1 1 + t d t = Γ ( n + p ) 2 π E n + p ( z ) z n + p 1 .
23: Bibliography S
  • F. C. Smith (1939a) On the logarithmic solutions of the generalized hypergeometric equation when p = q + 1 . Bull. Amer. Math. Soc. 45 (8), pp. 629–636.
  • F. C. Smith (1939b) Relations among the fundamental solutions of the generalized hypergeometric equation when p = q + 1 . II. Logarithmic cases. Bull. Amer. Math. Soc. 45 (12), pp. 927–935.
  • 24: 6.2 Definitions and Interrelations
    §6.2(i) Exponential and Logarithmic Integrals
    As in the case of the logarithm4.2(i)) there is a cut along the interval ( , 0 ] and the principal value is two-valued on ( , 0 ) . … The logarithmic integral is defined by
    6.2.8 li ( x ) = 0 x d t ln t = Ei ( ln x ) , x > 1 .
    The generalized exponential integral E p ( z ) , p , is treated in Chapter 8. …
    25: 8.7 Series Expansions
    8.7.6 Γ ( a , x ) = x a e x n = 0 L n ( a ) ( x ) n + 1 , x > 0 , a < 1 2 .
    26: 2.3 Integrals of a Real Variable
    For extensions to oscillatory integrals with more general t -powers and logarithmic singularities see Wong and Lin (1978) and Sidi (2010). …
    27: 31.3 Basic Solutions
    In general, one of them has a logarithmic singularity at z = 0 . …
    28: 13.6 Relations to Other Functions
    13.6.6 U ( a , a , z ) = z 1 a U ( 1 , 2 a , z ) = z 1 a e z E a ( z ) = e z Γ ( 1 a , z ) .
    29: 6 Exponential, Logarithmic, Sine, and
    Cosine Integrals
    Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals
    30: 14.3 Definitions and Hypergeometric Representations
    14.3.7 Q ν μ ( x ) = e μ π i π 1 / 2 Γ ( ν + μ + 1 ) ( x 2 1 ) μ / 2 2 ν + 1 x ν + μ + 1 𝐅 ( 1 2 ν + 1 2 μ + 1 , 1 2 ν + 1 2 μ + 1 2 ; ν + 3 2 ; 1 x 2 ) , μ + ν 1 , 2 , 3 , .