About the Project

fundamental solutions

AdvancedHelp

(0.002 seconds)

21—25 of 25 matching pages

21: Bibliography M
  • R. S. Maier (2007) The 192 solutions of the Heun equation. Math. Comp. 76 (258), pp. 811–843.
  • D. W. Matula and P. Kornerup (1980) Foundations of Finite Precision Rational Arithmetic. In Fundamentals of Numerical Computation (Computer-oriented Numerical Analysis), G. Alefeld and R. D. Grigorieff (Eds.), Comput. Suppl., Vol. 2, Vienna, pp. 85–111.
  • M. Mazzocco (2001a) Rational solutions of the Painlevé VI equation. J. Phys. A 34 (11), pp. 2281–2294.
  • M. Mazzocco (2001b) Picard and Chazy solutions to the Painlevé VI equation. Math. Ann. 321 (1), pp. 157–195.
  • P. J. Mohr and B. N. Taylor (2005) CODATA recommended values of the fundamental physical constants: 2002. Rev. Mod.Phys. 77, pp. 1–107.
  • 22: 32.10 Special Function Solutions
    §32.10 Special Function Solutions
    with solutionwhich has the solutionwhere the fundamental periods 2 ϕ 1 and 2 ϕ 2 are linearly independent functions satisfying the hypergeometric equation …
    23: 10.73 Physical Applications
    and on separation of variables we obtain solutions of the form e ± i n ϕ e ± κ z J n ( κ r ) , from which a solution satisfying prescribed boundary conditions may be constructed. … It is fundamental in the study of electromagnetic wave transmission. … The functions 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗁 n ( 1 ) ( x ) , and 𝗁 n ( 2 ) ( x ) arise in the solution (again by separation of variables) of the Helmholtz equation in spherical coordinates ρ , θ , ϕ 1.5(ii)): …With the spherical harmonic Y , m ( θ , ϕ ) defined as in §14.30(i), the solutions are of the form f = g ( k ρ ) Y , m ( θ , ϕ ) with g = 𝗃 , 𝗒 , 𝗁 ( 1 ) , or 𝗁 ( 2 ) , depending on the boundary conditions. …In quantum mechanics the spherical Bessel functions arise in the solution of the Schrödinger wave equation for a particle in a central potential. …
    24: Bibliography K
  • K. Kajiwara and Y. Ohta (1996) Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37 (9), pp. 4693–4704.
  • K. Kajiwara and Y. Ohta (1998) Determinant structure of the rational solutions for the Painlevé IV equation. J. Phys. A 31 (10), pp. 2431–2446.
  • A. A. Kapaev (1988) Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Differ. Uravn. 24 (10), pp. 1684–1695 (Russian).
  • D. E. Knuth (1968) The Art of Computer Programming. Vol. 1: Fundamental Algorithms. 1st edition, Addison-Wesley Publishing Co., Reading, MA-London-Don Mills, Ont.
  • Y. A. Kravtsov (1964) Asymptotic solution of Maxwell’s equations near caustics. Izv. Vuz. Radiofiz. 7, pp. 1049–1056.
  • 25: 3.11 Approximation Techniques
    There exists a unique solution of this minimax problem and there are at least k + + 2 values x j , a x 0 < x 1 < < x k + + 1 b , such that m j = m , where … With b 0 = 1 , the last q equations give b 1 , , b q as the solution of a system of linear equations. … If the functions ϕ k ( x ) are linearly independent on the set x 1 , x 2 , , x J , that is, the only solution of the system of equations … is of fundamental importance in the FFT algorithm. …