About the Project

functions s(ϵ,ℓ;r),c(ϵ,ℓ;r)

AdvancedHelp

(0.020 seconds)

31—40 of 570 matching pages

31: 11.1 Special Notation
The functions treated in this chapter are the Struve functions 𝐇 ν ( z ) and 𝐊 ν ( z ) , the modified Struve functions 𝐋 ν ( z ) and 𝐌 ν ( z ) , the Lommel functions s μ , ν ( z ) and S μ , ν ( z ) , the Anger function 𝐉 ν ( z ) , the Weber function 𝐄 ν ( z ) , and the associated Anger–Weber function 𝐀 ν ( z ) .
32: 23.16 Graphics
See accompanying text
Figure 23.16.3: Dedekind’s eta function η ( x + i y ) for 0.0625 x 0.0625 , 0.0001 y 0.07 . Magnify 3D Help
33: 22.1 Special Notation
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . … Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …
34: 13.24 Series
13.24.1 M κ , μ ( z ) = Γ ( κ + μ ) 2 2 κ + 2 μ z 1 2 κ s = 0 ( 1 ) s ( 2 κ + 2 μ ) s ( 2 κ ) s ( 1 + 2 μ ) s s ! ( κ + μ + s ) I κ + μ + s ( 1 2 z ) , 2 μ , κ + μ 1 , 2 , 3 , ,
13.24.2 1 Γ ( 1 + 2 μ ) M κ , μ ( z ) = 2 2 μ z μ + 1 2 s = 0 p s ( μ ) ( z ) ( 2 κ z ) 2 μ s J 2 μ + s ( 2 κ z ) ,
13.24.3 exp ( 1 2 z ( coth t 1 t ) ) ( t sinh t ) 1 2 μ = s = 0 p s ( μ ) ( z ) ( t z ) s .
35: 19.10 Relations to Other Functions
§19.10(i) Theta and Elliptic Functions
For relations of Legendre’s integrals to theta functions, Jacobian functions, and Weierstrass functions, see §§20.9(i), 22.15(ii), and 23.6(iv), respectively. …
36: 13.1 Special Notation
The main functions treated in this chapter are the Kummer functions M ( a , b , z ) and U ( a , b , z ) , Olver’s function 𝐌 ( a , b , z ) , and the Whittaker functions M κ , μ ( z ) and W κ , μ ( z ) . …
37: 10.1 Special Notation
For older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
38: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 39: 25.13 Periodic Zeta Function
    The notation F ( x , s ) is used for the polylogarithm Li s ( e 2 π i x ) with x real:
    25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
    25.13.2 F ( x , s ) = Γ ( 1 s ) ( 2 π ) 1 s ( e π i ( 1 s ) / 2 ζ ( 1 s , x ) + e π i ( s 1 ) / 2 ζ ( 1 s , 1 x ) ) , 0 < x < 1 , s > 1 ,
    25.13.3 ζ ( 1 s , x ) = Γ ( s ) ( 2 π ) s ( e π i s / 2 F ( x , s ) + e π i s / 2 F ( x , s ) ) , s > 0 if 0 < x < 1 ; s > 1 if x = 1 .
    40: Simon Ruijsenaars