About the Project

first

AdvancedHelp

(0.001 seconds)

21—30 of 417 matching pages

21: 26.8 Set Partitions: Stirling Numbers
§26.8(i) Definitions
§26.8(ii) Generating Functions
§26.8(iv) Recurrence Relations
§26.8(v) Identities
22: 22.11 Fourier and Hyperbolic Series
22.11.3 dn ( z , k ) = π 2 K + 2 π K n = 1 q n cos ( 2 n ζ ) 1 + q 2 n .
22.11.6 nd ( z , k ) = π 2 K k + 2 π K k n = 1 ( 1 ) n q n cos ( 2 n ζ ) 1 + q 2 n .
22.11.7 ns ( z , k ) π 2 K csc ζ = 2 π K n = 0 q 2 n + 1 sin ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.8 ds ( z , k ) π 2 K csc ζ = 2 π K n = 0 q 2 n + 1 sin ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
23: 14.6 Integer Order
14.6.6 𝖯 ν m ( x ) = ( 1 x 2 ) m / 2 x 1 x 1 𝖯 ν ( x ) ( d x ) m .
14.6.7 P ν m ( x ) = ( x 2 1 ) m / 2 1 x 1 x P ν ( x ) ( d x ) m ,
24: 14.17 Integrals
14.17.3 x 𝖯 ν μ ( x ) 𝖰 ν μ ( x ) d x = 1 2 ν ( ν + 1 ) ( ( μ 2 ( ν + 1 ) ( ν + x 2 ) ) 𝖯 ν μ ( x ) 𝖰 ν μ ( x ) + ( ν + 1 ) ( ν μ + 1 ) x ( 𝖯 ν μ ( x ) 𝖰 ν + 1 μ ( x ) + 𝖯 ν + 1 μ ( x ) 𝖰 ν μ ( x ) ) ( ν μ + 1 ) 2 𝖯 ν + 1 μ ( x ) 𝖰 ν + 1 μ ( x ) ) , ν 0 , 1 .
14.17.4 x ( 1 x 2 ) 3 / 2 𝖯 ν μ ( x ) 𝖰 ν μ ( x ) d x = 1 ( 1 4 μ 2 ) ( 1 x 2 ) 1 / 2 ( ( 1 2 μ 2 + 2 ν ( ν + 1 ) ) 𝖯 ν μ ( x ) 𝖰 ν μ ( x ) + ( 2 ν + 1 ) ( μ ν 1 ) x ( 𝖯 ν μ ( x ) 𝖰 ν + 1 μ ( x ) + 𝖯 ν + 1 μ ( x ) 𝖰 ν μ ( x ) ) + 2 ( μ ν 1 ) 2 𝖯 ν + 1 μ ( x ) 𝖰 ν + 1 μ ( x ) ) , μ ± 1 2 .
In (14.17.1)–(14.17.4), 𝖯 may be replaced by 𝖰 , and in (14.17.3) and (14.17.4), 𝖰 may be replaced by 𝖯 . …
14.17.17 0 π 𝖰 l ( cos θ ) 𝖯 m ( cos θ ) 𝖯 n ( cos θ ) sin θ d θ = 0 , l , m , n = 1 , 2 , 3 , , | m n | < l < m + n .
25: 14.11 Derivatives with Respect to Degree or Order
(14.11.1) holds if 𝖯 ν μ ( x ) is replaced by P ν μ ( x ) , provided that the factor ( ( 1 + x ) / ( 1 x ) ) μ / 2 in (14.11.3) is replaced by ( ( x + 1 ) / ( x 1 ) ) μ / 2 . (14.11.4) holds if 𝖯 ν μ ( x ) , 𝖯 ν ( x ) , and 𝖰 ν ( x ) are replaced by P ν μ ( x ) , P ν ( x ) , and Q ν ( x ) , respectively. …
26: 29.8 Integral Equations
Let w ( z ) be any solution of (29.2.1) of period 4 K , w 2 ( z ) be a linearly independent solution, and 𝒲 { w , w 2 } denote their Wronskian. …
29.8.2 μ w ( z 1 ) w ( z 2 ) w ( z 3 ) = 2 K 2 K 𝖯 ν ( x ) w ( z ) d z ,
where 𝖯 ν ( x ) is the Ferrers function of the first kind (§14.3(i)), …
w ( z + 2 K ) = σ w ( z ) ,
27: 14.2 Differential Equations
Standard solutions: 𝖯 ν ( ± x ) , 𝖰 ν ( ± x ) , 𝖰 ν 1 ( ± x ) , P ν ( ± x ) , Q ν ( ± x ) , Q ν 1 ( ± x ) . 𝖯 ν ( x ) and 𝖰 ν ( x ) are real when ν and x ( 1 , 1 ) , and P ν ( x ) and Q ν ( x ) are real when ν and x ( 1 , ) . … Standard solutions: 𝖯 ν μ ( ± x ) , 𝖯 ν μ ( ± x ) , 𝖰 ν μ ( ± x ) , 𝖰 ν 1 μ ( ± x ) , P ν μ ( ± x ) , P ν μ ( ± x ) , 𝑸 ν μ ( ± x ) , 𝑸 ν 1 μ ( ± x ) . … Ferrers functions and the associated Legendre functions are related to the Legendre functions by the equations 𝖯 ν 0 ( x ) = 𝖯 ν ( x ) , 𝖰 ν 0 ( x ) = 𝖰 ν ( x ) , P ν 0 ( x ) = P ν ( x ) , Q ν 0 ( x ) = Q ν ( x ) , 𝑸 ν 0 ( x ) = 𝑸 ν ( x ) = Q ν ( x ) / Γ ( ν + 1 ) . 𝖯 ν μ ( x ) , 𝖯 1 2 + i τ μ ( x ) , and 𝖰 ν μ ( x ) are real when ν , μ , and τ , and x ( 1 , 1 ) ; P ν μ ( x ) and 𝑸 ν μ ( x ) are real when ν and μ , and x ( 1 , ) . …
28: 14.1 Special Notation
The main functions treated in this chapter are the Legendre functions 𝖯 ν ( x ) , 𝖰 ν ( x ) , P ν ( z ) , Q ν ( z ) ; Ferrers functions 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P ν μ ( z ) , Q ν μ ( z ) , 𝑸 ν μ ( z ) ; conical functions 𝖯 1 2 + i τ μ ( x ) , 𝖰 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ μ ( x ) , Q 1 2 + i τ μ ( x ) (also known as Mehler functions). … Among other notations commonly used in the literature Erdélyi et al. (1953a) and Olver (1997b) denote 𝖯 ν μ ( x ) and 𝖰 ν μ ( x ) by P ν μ ( x ) and Q ν μ ( x ) , respectively. Magnus et al. (1966) denotes 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) , P ν μ ( z ) , and Q ν μ ( z ) by P ν μ ( x ) , Q ν μ ( x ) , 𝔓 ν μ ( z ) , and 𝔔 ν μ ( z ) , respectively. Hobson (1931) denotes both 𝖯 ν μ ( x ) and P ν μ ( x ) by P ν μ ( x ) ; similarly for 𝖰 ν μ ( x ) and Q ν μ ( x ) .
29: 14.7 Integer Degree and Order
When m is even and m n , 𝖯 n m ( x ) and P n m ( x ) are polynomials of degree n . …
14.7.17 𝖯 n m ( x ) = ( 1 ) n m 𝖯 n m ( x ) ,
30: 10.44 Sums
If 𝒵 = I and the upper signs are taken, then the restriction on λ is unnecessary. …
I ν ( z ) = k = 0 z k k ! J ν + k ( z ) ,
The restriction | v | < | u | is unnecessary when 𝒵 = I and ν is an integer. …
10.44.5 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 2 k = 1 I 2 k ( z ) k ,
10.44.6 K n ( z ) = n ! ( 1 2 z ) n 2 k = 0 n 1 ( 1 ) k ( 1 2 z ) k I k ( z ) k ! ( n k ) + ( 1 ) n 1 ( ln ( 1 2 z ) ψ ( n + 1 ) ) I n ( z ) + ( 1 ) n k = 1 ( n + 2 k ) I n + 2 k ( z ) k ( n + k ) ,