About the Project

exponential function

AdvancedHelp

(0.017 seconds)

21—30 of 414 matching pages

21: 8.24 Physical Applications
§8.24 Physical Applications
The function γ ( a , x ) appears in: discussions of power-law relaxation times in complex physical systems (Sornette (1998)); logarithmic oscillations in relaxation times for proteins (Metzler et al. (1999)); Gaussian orbitals and exponential (Slater) orbitals in quantum chemistry (Shavitt (1963), Shavitt and Karplus (1965)); population biology and ecological systems (Camacho et al. (2002)). … The function E p ( x ) , with p > 0 , appears in theories of transport and radiative equilibrium (Hopf (1934), Kourganoff (1952), Altaç (1996)). With more general values of p , E p ( x ) supplies fundamental auxiliary functions that are used in the computation of molecular electronic integrals in quantum chemistry (Harris (2002), Shavitt (1963)), and also wave acoustics of overlapping sound beams (Ding (2000)).
22: 13.18 Relations to Other Functions
13.18.3 M κ , κ 1 2 ( z ) = e 1 2 z z κ .
When 1 2 κ ± μ is an integer the Whittaker functions can be expressed as incomplete gamma functions (or generalized exponential integrals). …
13.18.4 M μ 1 2 , μ ( z ) = 2 μ e 1 2 z z 1 2 μ γ ( 2 μ , z ) ,
13.18.5 W μ 1 2 , μ ( z ) = e 1 2 z z 1 2 μ Γ ( 2 μ , z ) .
23: 5.6 Inequalities
5.6.1 1 < ( 2 π ) 1 / 2 x ( 1 / 2 ) x e x Γ ( x ) < e 1 / ( 12 x ) ,
5.6.5 exp ( ( 1 s ) ψ ( x + s 1 / 2 ) ) Γ ( x + 1 ) Γ ( x + s ) exp ( ( 1 s ) ψ ( x + 1 2 ( s + 1 ) ) ) , 0 < s < 1 .
5.6.9 | Γ ( z ) | ( 2 π ) 1 / 2 | z | x ( 1 / 2 ) e π | y | / 2 exp ( 1 6 | z | 1 ) .
24: 4.9 Continued Fractions
§4.9(ii) Exponentials
For other continued fractions involving the exponential function see Lorentzen and Waadeland (1992, pp. 563–564). …
25: 18.32 OP’s with Respect to Freud Weights
18.32.1 w ( x ) = exp ( Q ( x ) ) , < x < ,
18.32.2 w ( x ) = | x | α exp ( Q ( x ) ) , x ,  α > 1 ,
26: 36.2 Catastrophes and Canonical Integrals
36.2.6 Ψ ( E ) ( 𝐱 ) = 2 π / 3 exp ( i ( 4 27 z 3 + 1 3 x z 1 4 π ) ) exp ( 7 π i / 12 ) exp ( π i / 12 ) exp ( i ( u 6 + 2 z u 4 + ( z 2 + x ) u 2 + y 2 12 u 2 ) ) d u ,
36.2.15 Ψ K ( 𝟎 ) = 2 K + 2 Γ ( 1 K + 2 ) { exp ( i π 2 ( K + 2 ) ) , K  even, cos ( π 2 ( K + 2 ) ) , K  odd .
36.2.28 Ψ ( E ) ( 0 , 0 , z ) = Ψ ( E ) ( 0 , 0 , z ) ¯ = 2 π π z 27 exp ( 2 27 i z 3 ) ( J 1 / 6 ( 2 27 z 3 ) + i J 1 / 6 ( 2 27 z 3 ) ) , z 0 ,
36.2.29 Ψ ( H ) ( 0 , 0 , z ) = Ψ ( H ) ( 0 , 0 , z ) ¯ = 2 1 / 3 3 exp ( 1 27 i z 3 ) Ψ ( E ) ( 0 , 0 , z 2 2 / 3 ) , < z < .
27: 10.56 Generating Functions
10.56.5 exp ( z 2 + 2 i z t ) z = e z z + 2 π n = 1 ( i t ) n n ! 𝗄 n 1 ( z ) .
28: 4.8 Identities
4.8.10 exp ( ln z ) = exp ( Ln z ) = z .
§4.8(ii) Powers
29: 10.62 Graphs
§10.62 Graphs
For the modulus functions M ( x ) and N ( x ) see §10.68(i) with ν = 0 . …
See accompanying text
Figure 10.62.3: e x / 2 ber x , e x / 2 bei x , e x / 2 M ( x ) , 0 x 8 . Magnify
See accompanying text
Figure 10.62.4: e x / 2 ker x , e x / 2 kei x , e x / 2 N ( x ) , 0 x 8 . Magnify
30: 7.11 Relations to Other Functions
Incomplete Gamma Functions and Generalized Exponential Integral
7.11.4 erf z = 2 z π M ( 1 2 , 3 2 , z 2 ) = 2 z π e z 2 M ( 1 , 3 2 , z 2 ) ,
7.11.5 erfc z = 1 π e z 2 U ( 1 2 , 1 2 , z 2 ) = z π e z 2 U ( 1 , 3 2 , z 2 ) .
7.11.6 C ( z ) + i S ( z ) = z M ( 1 2 , 3 2 , 1 2 π i z 2 ) = z e π i z 2 / 2 M ( 1 , 3 2 , 1 2 π i z 2 ) .