About the Project

expansions in spherical Bessel functions

AdvancedHelp

(0.014 seconds)

11—20 of 32 matching pages

11: 18.15 Asymptotic Approximations
These expansions are in terms of Whittaker functions13.14). …The latter expansions are in terms of Bessel functions, and are uniform in complex z -domains not containing neighborhoods of 1. … These expansions are in terms of Bessel functions and modified Bessel functions, respectively. …
In Terms of Bessel Functions
For an error bound for the first term in the Airy-function expansions see Olver (1997b, p. 403). …
12: 10.49 Explicit Formulas
§10.49(i) Unmodified Functions
§10.49(ii) Modified Functions
§10.49(iii) Rayleigh’s Formulas
§10.49(iv) Sums or Differences of Squares
13: 18.39 Applications in the Physical Sciences
By (1.5.17) the first term in (18.39.21), which is the quantum kinetic energy operator T e , can be written in spherical coordinates r , θ , ϕ as … …
a) Spherical Radial Coulomb Wave Functions Expressed in terms of Laguerre OP’s
c) Spherical Radial Coulomb Wave Functions
See Yamani and Fishman (1975) for L 2 for expansions of both the regular and irregular spherical Bessel functions, which are the Pollaczeks with a = Z = 0 , and Coulomb functions for fixed l , Broad and Reinhardt (1976) for a many particle example, and the overview of Alhaidari et al. (2008). …
14: 10.75 Tables
§10.75(ix) Spherical Bessel Functions, Modified Spherical Bessel Functions, and their Derivatives
  • The main tables in Abramowitz and Stegun (1964, Chapter 10) give 𝗃 n ( x ) , 𝗒 n ( x ) n = 0 ( 1 ) 8 , x = 0 ( .1 ) 10 , 5–8S; 𝗃 n ( x ) , 𝗒 n ( x ) n = 0 ( 1 ) 20 ( 10 ) 50 , 100, x = 1 , 2 , 5 , 10 , 50 , 100 , 10S; 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , n = 0 , 1 , 2 , x = 0 ( .1 ) 5 , 4–9D; 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100, x = 1 , 2 , 5 , 10 , 50 , 100 , 10S. (For the notation see §10.1 and §10.47(ii).)

  • Zhang and Jin (1996, pp. 296–305) tabulates 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗒 n ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; x 𝗃 n ( x ) , ( x 𝗃 n ( x ) ) , x 𝗒 n ( x ) , ( x 𝗒 n ( x ) ) (Riccati–Bessel functions and their derivatives), n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; real and imaginary parts of 𝗃 n ( z ) , 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗒 n ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) , 𝗄 n ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, z = 4 + 2 i , 20 + 10 i , 8S. (For the notation replace j , y , i , k by 𝗃 , 𝗒 , 𝗂 ( 1 ) , 𝗄 , respectively.)

  • §10.75(x) Zeros and Associated Values of Derivatives of Spherical Bessel Functions
  • Olver (1960) tabulates a n , m , 𝗃 n ( a n , m ) , b n , m , 𝗒 n ( b n , m ) , n = 1 ( 1 ) 20 , m = 1 ( 1 ) 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n .

  • 15: Bibliography D
  • B. Davies (1973) Complex zeros of linear combinations of spherical Bessel functions and their derivatives. SIAM J. Math. Anal. 4 (1), pp. 128–133.
  • G. Delic (1979b) Chebyshev series for the spherical Bessel function j l ( r ) . Comput. Phys. Comm. 18 (1), pp. 73–86.
  • T. M. Dunster, D. A. Lutz, and R. Schäfke (1993) Convergent Liouville-Green expansions for second-order linear differential equations, with an application to Bessel functions. Proc. Roy. Soc. London Ser. A 440, pp. 37–54.
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • T. M. Dunster (2001c) Uniform asymptotic expansions for the reverse generalized Bessel polynomials, and related functions. SIAM J. Math. Anal. 32 (5), pp. 987–1013.
  • 16: 10.58 Zeros
    §10.58 Zeros
    For n 0 the m th positive zeros of 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , and 𝗒 n ( x ) are denoted by a n , m , a n , m , b n , m , and b n , m , respectively, except that for n = 0 we count x = 0 as the first zero of 𝗃 0 ( x ) . …
    𝗃 n ( a n , m ) = π 2 j n + 1 2 , m J n + 1 2 ( j n + 1 2 , m ) ,
    Hence properties of a n , m and b n , m are derivable straightforwardly from results given in §§10.21(i)10.21(iii), 10.21(vi)10.21(viii), and 10.21(x). …For some properties of a n , m and b n , m , including asymptotic expansions, see Olver (1960, pp. xix–xxi). …
    17: 14.15 Uniform Asymptotic Approximations
    Here I and K are the modified Bessel functions10.25(ii)). … For asymptotic expansions and explicit error bounds, see Dunster (2003b). … For the Bessel functions J and Y see §10.2(ii), and for the env functions associated with J and Y see §2.8(iv). … For convergent series expansions see Dunster (2004). … See also Olver (1997b, pp. 311–313) and §18.15(iii) for a generalized asymptotic expansion in terms of elementary functions for Legendre polynomials P n ( cos θ ) as n with θ fixed. …
    18: Bibliography H
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 95–98.
  • C. J. Howls and A. B. Olde Daalhuis (1999) On the resurgence properties of the uniform asymptotic expansion of Bessel functions of large order. Proc. Roy. Soc. London Ser. A 455, pp. 3917–3930.
  • J. Humblet (1985) Bessel function expansions of Coulomb wave functions. J. Math. Phys. 26 (4), pp. 656–659.
  • G. Hunter and M. Kuriyan (1976) Asymptotic expansions of Mathieu functions in wave mechanics. J. Comput. Phys. 21 (3), pp. 319–325.
  • 19: Bibliography V
  • B. Ph. van Milligen and A. López Fraguas (1994) Expansion of vacuum magnetic fields in toroidal harmonics. Comput. Phys. Comm. 81 (1-2), pp. 74–90.
  • A. N. Vavreck and W. Thompson (1984) Some novel infinite series of spherical Bessel functions. Quart. Appl. Math. 42 (3), pp. 321–324.
  • R. Vidūnas and N. M. Temme (2002) Symbolic evaluation of coefficients in Airy-type asymptotic expansions. J. Math. Anal. Appl. 269 (1), pp. 317–331.
  • H. Volkmer (1999) Expansions in products of Heine-Stieltjes polynomials. Constr. Approx. 15 (4), pp. 467–480.
  • H. Volkmer and J. J. Wood (2014) A note on the asymptotic expansion of generalized hypergeometric functions. Anal. Appl. (Singap.) 12 (1), pp. 107–115.
  • 20: Bibliography S
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • A. Sharples (1971) Uniform asymptotic expansions of modified Mathieu functions. J. Reine Angew. Math. 247, pp. 1–17.
  • A. Sidi (2011) Asymptotic expansion of Mellin transforms in the complex plane. Int. J. Pure Appl. Math. 71 (3), pp. 465–480.
  • S. L. Skorokhodov (1985) On the calculation of complex zeros of the modified Bessel function of the second kind. Dokl. Akad. Nauk SSSR 280 (2), pp. 296–299.