About the Project

digamma function

AdvancedHelp

(0.004 seconds)

21—30 of 64 matching pages

21: 19.12 Asymptotic Approximations
With ψ ( x ) denoting the digamma function5.2(i)) in this subsection, the asymptotic behavior of K ( k ) and E ( k ) near the singularity at k = 1 is given by the following convergent series: …
22: 10.38 Derivatives with Respect to Order
10.38.1 I ± ν ( z ) ν = ± I ± ν ( z ) ln ( 1 2 z ) ( 1 2 z ) ± ν k = 0 ψ ( k + 1 ± ν ) Γ ( k + 1 ± ν ) ( 1 4 z 2 ) k k ! ,
23: 10.8 Power Series
10.8.1 Y n ( z ) = ( 1 2 z ) n π k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + 2 π ln ( 1 2 z ) J n ( z ) ( 1 2 z ) n π k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
24: 13.2 Definitions and Basic Properties
13.2.19 U ( a , 1 , z ) = 1 Γ ( a ) ( ln z + ψ ( a ) + 2 γ ) + O ( z ln z ) ,
13.2.27 k = 1 n n ! ( k 1 ) ! ( n k ) ! ( 1 a ) k z k k = 0 ( a ) k ( n + 1 ) k k ! z k ( ln z + ψ ( a + k ) ψ ( 1 + k ) ψ ( n + k + 1 ) ) ,
13.2.28 k = 1 n n ! ( k 1 ) ! ( n k ) ! ( 1 a ) k z k k = 0 a ( a ) k ( n + 1 ) k k ! z k ( ln z + ψ ( 1 a k ) ψ ( 1 + k ) ψ ( n + k + 1 ) ) + ( 1 ) 1 a ( a ) ! k = 1 a ( k 1 + a ) ! ( n + 1 ) k k ! z k ,
13.2.30 k = 1 n + 1 ( n + 1 ) ! ( k 1 ) ! ( n k + 1 ) ! ( a n ) k z n k + 1 k = 0 ( a + n + 1 ) k ( n + 2 ) k k ! z n + k + 1 ( ln z + ψ ( a + n + k + 1 ) ψ ( 1 + k ) ψ ( n + k + 2 ) ) ,
13.2.31 k = 1 n + 1 ( n + 1 ) ! ( k 1 ) ! ( n k + 1 ) ! ( a n ) k z n k + 1 k = 0 a n 1 ( a + n + 1 ) k ( n + 2 ) k k ! z n + k + 1 ( ln z + ψ ( a n k ) ψ ( 1 + k ) ψ ( n + k + 2 ) ) + ( 1 ) n a ( a n 1 ) ! k = a n ( k + a + n ) ! ( n + 2 ) k k ! z n + k + 1 ,
25: 6.10 Other Series Expansions
6.10.7 a n = ( 2 n + 1 ) ( 1 ( 1 ) n + ψ ( n + 1 ) ψ ( 1 ) ) ,
and ψ denotes the logarithmic derivative of the gamma function5.2(i)). …
26: 33.6 Power-Series Expansions in ρ
33.6.5 H ± ( η , ρ ) = e ± i θ ( η , ρ ) ( 2 + 1 ) ! Γ ( ± i η ) ( k = 0 ( a ) k ( 2 + 2 ) k k ! ( 2 i ρ ) a + k ( ln ( 2 i ρ ) + ψ ( a + k ) ψ ( 1 + k ) ψ ( 2 + 2 + k ) ) k = 1 2 + 1 ( 2 + 1 ) ! ( k 1 ) ! ( 2 + 1 k ) ! ( 1 a ) k ( 2 i ρ ) a k ) ,
27: 10.44 Sums
10.44.6 K n ( z ) = n ! ( 1 2 z ) n 2 k = 0 n 1 ( 1 ) k ( 1 2 z ) k I k ( z ) k ! ( n k ) + ( 1 ) n 1 ( ln ( 1 2 z ) ψ ( n + 1 ) ) I n ( z ) + ( 1 ) n k = 1 ( n + 2 k ) I n + 2 k ( z ) k ( n + k ) ,
28: 10.15 Derivatives with Respect to Order
10.15.1 J ± ν ( z ) ν = ± J ± ν ( z ) ln ( 1 2 z ) ( 1 2 z ) ± ν k = 0 ( 1 ) k ψ ( k + 1 ± ν ) Γ ( k + 1 ± ν ) ( 1 4 z 2 ) k k ! ,
29: 25.11 Hurwitz Zeta Function
25.11.12 ζ ( n + 1 , a ) = ( 1 ) n + 1 ψ ( n ) ( a ) n ! , n = 1 , 2 , 3 , .
25.11.21 ζ ( 1 2 n , h k ) = ( ψ ( 2 n ) ln ( 2 π k ) ) B 2 n ( h / k ) 2 n ( ψ ( 2 n ) ln ( 2 π ) ) B 2 n 2 n k 2 n + ( 1 ) n + 1 π ( 2 π k ) 2 n r = 1 k 1 sin ( 2 π r h k ) ψ ( 2 n 1 ) ( r k ) + ( 1 ) n + 1 2 ( 2 n 1 ) ! ( 2 π k ) 2 n r = 1 k 1 cos ( 2 π r h k ) ζ ( 2 n , r k ) + ζ ( 1 2 n ) k 2 n ,
25.11.23 ζ ( 1 2 n , 1 3 ) = π ( 9 n 1 ) B 2 n 8 n 3 ( 3 2 n 1 1 ) B 2 n ln 3 4 n 3 2 n 1 ( 1 ) n ψ ( 2 n 1 ) ( 1 3 ) 2 3 ( 6 π ) 2 n 1 ( 3 2 n 1 1 ) ζ ( 1 2 n ) 2 3 2 n 1 , n = 1 , 2 , 3 , .
25.11.32 0 a x n ψ ( x ) d x = ( 1 ) n 1 ζ ( n ) + ( 1 ) n H n B n + 1 n + 1 k = 0 n ( 1 ) k ( n k ) H k B k + 1 ( a ) k + 1 a n k + k = 0 n ( 1 ) k ( n k ) ζ ( k , a ) a n k , n = 1 , 2 , , a > 0 ,
25.11.38 k = 1 ( n + k k ) ζ ( n + k + 1 , a ) z k = ( 1 ) n n ! ( ψ ( n ) ( a ) ψ ( n ) ( a z ) ) , n = 1 , 2 , 3 , , a > 0 , | z | < | a | .
30: 8.19 Generalized Exponential Integral
8.19.8 E n ( z ) = ( z ) n 1 ( n 1 ) ! ( ψ ( n ) ln z ) k = 0 k n 1 ( z ) k k ! ( 1 n + k ) ,
8.19.9 E n ( z ) = ( 1 ) n z n 1 ( n 1 ) ! ln z + e z ( n 1 ) ! k = 1 n 1 ( z ) k 1 Γ ( n k ) + e z ( z ) n 1 ( n 1 ) ! k = 0 z k k ! ψ ( k + 1 ) ,