About the Project

derivative rule

AdvancedHelp

(0.002 seconds)

11—18 of 18 matching pages

11: 3.3 Interpolation
with the derivative …and compute an approximation to a 1 by using Newton’s rule3.8(ii)) with starting value x = 2.5 . …Then by using x 3 in Newton’s interpolation formula, evaluating [ x 0 , x 1 , x 2 , x 3 ] f = 0.26608 28233 and recomputing f ( x ) , another application of Newton’s rule with starting value x 3 gives the approximation x = 2.33810 7373 , with 8 correct digits. …
12: 3.8 Nonlinear Equations
§3.8(ii) Newton’s Rule
Newton’s rule is given by … Another iterative method is Halley’s rule: …The rule converges locally and is cubically convergent. …
13: Bibliography G
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2003b) Computing special functions by using quadrature rules. Numer. Algorithms 33 (1-4), pp. 265–275.
  • A. Gil and J. Segura (2014) On the complex zeros of Airy and Bessel functions and those of their derivatives. Anal. Appl. (Singap.) 12 (5), pp. 537–561.
  • G. H. Golub and J. H. Welsch (1969) Calculation of Gauss quadrature rules. Math. Comp. 23 (106), pp. 221–230.
  • 14: Bibliography W
  • J. Waldvogel (2006) Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT 46 (1), pp. 195–202.
  • P. L. Walker (2007) The zeros of Euler’s psi function and its derivatives. J. Math. Anal. Appl. 332 (1), pp. 607–616.
  • R. J. Wells (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spect. and Rad. Transfer 62 (1), pp. 29–48.
  • 15: Bibliography
  • G. Allasia and R. Besenghi (1987a) Numerical computation of Tricomi’s psi function by the trapezoidal rule. Computing 39 (3), pp. 271–279.
  • G. Allasia and R. Besenghi (1991) Numerical evaluation of the Kummer function with complex argument by the trapezoidal rule. Rend. Sem. Mat. Univ. Politec. Torino 49 (3), pp. 315–327.
  • G. Allasia and R. Besenghi (1987b) Numerical calculation of incomplete gamma functions by the trapezoidal rule. Numer. Math. 50 (4), pp. 419–428.
  • G. Allasia and R. Besenghi (1989) Numerical Calculation of the Riemann Zeta Function and Generalizations by Means of the Trapezoidal Rule. In Numerical and Applied Mathematics, Part II (Paris, 1988), C. Brezinski (Ed.), IMACS Ann. Comput. Appl. Math., Vol. 1, pp. 467–472.
  • D. E. Amos (1983b) Algorithm 610. A portable FORTRAN subroutine for derivatives of the psi function. ACM Trans. Math. Software 9 (4), pp. 494–502.
  • 16: 3.11 Approximation Techniques
    The Padé approximants can be computed by Wynn’s cross rule. Any five approximants arranged in the Padé table as … From the equations S / a k = 0 , k = 0 , 1 , , n , we derive the normal equationsGiven n + 1 distinct points x k in the real interval [ a , b ] , with ( a = ) x 0 < x 1 < < x n 1 < x n ( = b ), on each subinterval [ x k , x k + 1 ] , k = 0 , 1 , , n 1 , a low-degree polynomial is defined with coefficients determined by, for example, values f k and f k of a function f and its derivative at the nodes x k and x k + 1 . …By taking more derivatives into account, the smoothness of the spline will increase. …
    17: Bibliography T
  • N. M. Temme (1979a) An algorithm with ALGOL 60 program for the computation of the zeros of ordinary Bessel functions and those of their derivatives. J. Comput. Phys. 32 (2), pp. 270–279.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • 18: 1.6 Vectors and Vector-Valued Functions
    where 𝐧 is the unit vector normal to 𝐚 and 𝐛 whose direction is determined by the right-hand rule; see Figure 1.6.1.
    See accompanying text
    Figure 1.6.1: Vector notation. Right-hand rule for cross products. Magnify
    1.6.19 = 𝐢 x + 𝐣 y + 𝐤 z .
    where g / n = g 𝐧 is the derivative of g normal to the surface outwards from V and 𝐧 is the unit outer normal vector. …