About the Project

delta airlines 716 351 6210 reservations contact number

AdvancedHelp

(0.003 seconds)

11—20 of 367 matching pages

11: 19.29 Reduction of General Elliptic Integrals
and α , β , γ , δ is any permutation of the numbers 1 , 2 , 3 , 4 , then …
U α β = U β α = U γ δ = U δ γ ,
Moreover, the requirement that one limit of integration be a branch point of the integrand is eliminated without doubling the number of standard integrals in the result. … The integrals in (19.29.4), (19.29.7), and (19.29.8) are I ( 𝟎 ) , I ( 𝐞 α 𝐞 δ ) , and I ( 𝐞 α 𝐞 5 ) , respectively. … where α , β , γ is any permutation of the numbers 1 , 2 , 3 , and …
12: 26.11 Integer Partitions: Compositions
c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . …
26.11.2 c m ( 0 ) = δ 0 , m ,
The Fibonacci numbers are determined recursively by … Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).
13: 31.7 Relations to Other Functions
31.7.1 F 1 2 ( α , β ; γ ; z ) = H ( 1 , α β ; α , β , γ , δ ; z ) = H ( 0 , 0 ; α , β , γ , α + β + 1 γ ; z ) = H ( a , a α β ; α , β , γ , α + β + 1 γ ; z ) .
Other reductions of H to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = α β p . …
31.7.2 H ( 2 , α β ; α , β , γ , α + β 2 γ + 1 ; z ) = F 1 2 ( 1 2 α , 1 2 β ; γ ; 1 ( 1 z ) 2 ) ,
31.7.3 H ( 4 , α β ; α , β , 1 2 , 2 3 ( α + β ) ; z ) = F 1 2 ( 1 3 α , 1 3 β ; 1 2 ; 1 ( 1 z ) 2 ( 1 1 4 z ) ) ,
γ = δ = ϵ = 1 2 ,
14: 36.7 Zeros
Δ z = 9 π 2 z n 2 ,
Δ x = 6 π z n .
36.7.6 exp ( 2 π i ( z z n Δ z + 2 x Δ x ) ) ( 2 exp ( 6 π i x Δ x ) cos ( 2 3 π y Δ x ) + 1 ) = 3 .
The rings are almost circular (radii close to ( Δ x ) / 9 and varying by less than 1%), and almost flat (deviating from the planes z n by at most ( Δ z ) / 36 ). …, y = 0 ), the number of rings in the m th row, measured from the origin and before the transition to hairpins, is given by …
15: Mathematical Introduction
The NIST Handbook has essentially the same objective as the Handbook of Mathematical Functions that was issued in 1964 by the National Bureau of Standards as Number 55 in the NBS Applied Mathematics Series (AMS). … These include, for example, multivalued functions of complex variables, for which new definitions of branch points and principal values are supplied (§§1.10(vi), 4.2(i)); the Dirac delta (or delta function), which is introduced in a more readily comprehensible way for mathematicians (§1.17); numerically satisfactory solutions of differential and difference equations (§§2.7(iv), 2.9(i)); and numerical analysis for complex variables (Chapter 3). …
complex plane (excluding infinity).
δ j , k or δ j k Kronecker delta: 0 if j k ; 1 if j = k .
Δ (or Δ x ) forward difference operator: Δ f ( x ) = f ( x + 1 ) f ( x ) .
For equations or other technical information that appeared previously in AMS 55, the DLMF usually includes the corresponding AMS 55 equation number, or other form of reference, together with corrections, if needed. …
16: 34.2 Definition: 3 j Symbol
The corresponding projective quantum numbers m 1 , m 2 , m 3 are given by …
See accompanying text
Figure 34.2.1: Angular momenta j r and projective quantum numbers m r , r = 1 , 2 , 3 . Magnify
34.2.4 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( 1 ) j 1 j 2 m 3 Δ ( j 1 j 2 j 3 ) ( ( j 1 + m 1 ) ! ( j 1 m 1 ) ! ( j 2 + m 2 ) ! ( j 2 m 2 ) ! ( j 3 + m 3 ) ! ( j 3 m 3 ) ! ) 1 2 s ( 1 ) s s ! ( j 1 + j 2 j 3 s ) ! ( j 1 m 1 s ) ! ( j 2 + m 2 s ) ! ( j 3 j 2 + m 1 + s ) ! ( j 3 j 1 m 2 + s ) ! ,
34.2.5 Δ ( j 1 j 2 j 3 ) = ( ( j 1 + j 2 j 3 ) ! ( j 1 j 2 + j 3 ) ! ( j 1 + j 2 + j 3 ) ! ( j 1 + j 2 + j 3 + 1 ) ! ) 1 2 ,
34.2.6 ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( 1 ) j 2 m 1 + m 3 ( j 1 + j 2 + m 3 ) ! ( j 2 + j 3 m 1 ) ! Δ ( j 1 j 2 j 3 ) ( j 1 + j 2 + j 3 + 1 ) ! ( ( j 1 + m 1 ) ! ( j 3 m 3 ) ! ( j 1 m 1 ) ! ( j 2 + m 2 ) ! ( j 2 m 2 ) ! ( j 3 + m 3 ) ! ) 1 2 F 2 3 ( j 1 j 2 j 3 1 , j 1 + m 1 , j 3 m 3 ; j 1 j 2 m 3 , j 2 j 3 + m 1 ; 1 ) ,
17: 31.3 Basic Solutions
H ( a , q ; α , β , γ , δ ; z ) denotes the solution of (31.2.1) that corresponds to the exponent 0 at z = 0 and assumes the value 1 there. If the other exponent is not a positive integer, that is, if γ 0 , 1 , 2 , , then from §2.7(i) it follows that H ( a , q ; α , β , γ , δ ; z ) exists, is analytic in the disk | z | < 1 , and has the Maclaurin expansion … Solutions of (31.2.1) corresponding to the exponents 0 and 1 δ at z = 1 are respectively, …
31.3.7 ( 1 z ) 1 δ H ( 1 a , ( ( 1 a ) γ + ϵ ) ( 1 δ ) + α β q ; α + 1 δ , β + 1 δ , 2 δ , γ ; 1 z ) .
For example, H ( a , q ; α , β , γ , δ ; z ) is equal to …
18: 2.11 Remainder Terms; Stokes Phenomenon
uniformly when θ [ π + δ , π δ ] ( δ > 0 ) and | α | is bounded. … One is uniformly valid for π + δ ph z 3 π δ with bounded | α | , and achieves uniform exponential improvement throughout 0 ph z π : … For the sector 3 π + δ ph z π δ the conjugate result applies. … We now compute the forward differences Δ j , j = 0 , 1 , 2 , , of the moduli of the rounded values of the first 6 neglected terms: … Similar improvements are achievable by Aitken’s Δ 2 -process, Wynn’s ϵ -algorithm, and other acceleration transformations. …
19: 18.26 Wilson Class: Continued
18.26.4_1 R n ( y ( y + γ + δ + 1 ) ; γ , δ , N ) = Q y ( n ; γ , δ , N ) ,
18.26.4_2 R n ( y ( y + γ + δ + 1 ) ; α , β , γ , δ ) = R y ( n ( n + α + β + 1 ) ; γ , δ , α , β ) .
For comments on the use of the forward-difference operator Δ x , the backward-difference operator x , and the central-difference operator δ x , see §18.2(ii). …
18.26.16 Δ y ( R n ( y ( y + γ + δ + 1 ) ; α , β , γ , δ ) ) Δ y ( y ( y + γ + δ + 1 ) ) = n ( n + α + β + 1 ) ( α + 1 ) ( β + δ + 1 ) ( γ + 1 ) R n 1 ( y ( y + γ + δ + 2 ) ; α + 1 , β + 1 , γ + 1 , δ ) .
18.26.17 Δ y ( R n ( y ( y + γ + δ + 1 ) ; γ , δ , N ) ) Δ y ( y ( y + γ + δ + 1 ) ) = n ( γ + 1 ) N R n 1 ( y ( y + γ + δ + 2 ) ; γ + 1 , δ , N 1 ) .
20: 31.16 Mathematical Applications
31.16.5 P j = ( ϵ j + n ) j ( β + j 1 ) ( γ + δ + j 2 ) ( γ + δ + 2 j 3 ) ( γ + δ + 2 j 2 ) ,
31.16.6 Q j = a j ( j + γ + δ 1 ) q + ( j n ) ( j + β ) ( j + γ ) ( j + γ + δ 1 ) ( 2 j + γ + δ ) ( 2 j + γ + δ 1 ) + ( j + n + γ + δ 1 ) j ( j + δ 1 ) ( j β + γ + δ 1 ) ( 2 j + γ + δ 1 ) ( 2 j + γ + δ 2 ) ,
31.16.7 R j = ( n j ) ( j + n + γ + δ ) ( j + γ ) ( j + δ ) ( γ + δ + 2 j ) ( γ + δ + 2 j + 1 ) .