About the Project

cross ratio

AdvancedHelp

(0.002 seconds)

11—20 of 34 matching pages

11: 5.9 Integral Representations
5.9.2 1 Γ ( z ) = 1 2 π i ( 0 + ) e t t z d t ,
t z has its principal value where t crosses the positive real axis, and is continuous. …
5.9.8 Γ ( 1 + 1 n ) cos ( π 2 n ) = 0 cos ( t n ) d t , n = 2 , 3 , 4 , ,
5.9.9 Γ ( 1 + 1 n ) sin ( π 2 n ) = 0 sin ( t n ) d t , n = 2 , 3 , 4 , .
5.9.15 ψ ( z ) = ln z 1 2 z 2 0 t d t ( t 2 + z 2 ) ( e 2 π t 1 ) .
12: 21.2 Definitions
21.2.1 θ ( 𝐳 | 𝛀 ) = 𝐧 g e 2 π i ( 1 2 𝐧 𝛀 𝐧 + 𝐧 𝐳 ) .
13: 6.2 Definitions and Interrelations
where the path does not cross the negative real axis or pass through the origin. …
6.2.2 E 1 ( z ) = e z 0 e t t + z d t , | ph z | < π .
6.2.10 si ( z ) = z sin t t d t = Si ( z ) 1 2 π .
where the path does not cross the negative real axis or pass through the origin. …
14: Bibliography G
  • W. Gautschi (1964a) Algorithm 222: Incomplete beta function ratios. Comm. ACM 7 (3), pp. 143–144.
  • E. T. Goodwin (1949a) Recurrence relations for cross-products of Bessel functions. Quart. J. Mech. Appl. Math. 2 (1), pp. 72–74.
  • H. P. W. Gottlieb (1985) On the exceptional zeros of cross-products of derivatives of spherical Bessel functions. Z. Angew. Math. Phys. 36 (3), pp. 491–494.
  • GSL (free C library) GNU Scientific Library The GNU Project.
  • B. N. Gupta (1970) On Mill’s ratio. Proc. Cambridge Philos. Soc. 67, pp. 363–364.
  • 15: 10.50 Wronskians and Cross-Products
    §10.50 Wronskians and Cross-Products
    10.50.4 𝗃 0 ( z ) 𝗃 n ( z ) + 𝗒 0 ( z ) 𝗒 n ( z ) = cos ( 1 2 n π ) k = 0 n / 2 ( 1 ) k a 2 k ( n + 1 2 ) z 2 k + 2 + sin ( 1 2 n π ) k = 0 ( n 1 ) / 2 ( 1 ) k a 2 k + 1 ( n + 1 2 ) z 2 k + 3 ,
    16: 6.7 Integral Representations
    6.7.9 si ( z ) = 0 π / 2 e z cos t cos ( z sin t ) d t ,
    6.7.10 Ein ( z ) Cin ( z ) = 0 π / 2 e z cos t sin ( z sin t ) d t ,
    The path of integration does not cross the negative real axis or pass through the origin. …
    17: 8.21 Generalized Sine and Cosine Integrals
    8.21.1 ci ( a , z ) ± i si ( a , z ) = e ± 1 2 π i a Γ ( a , z e 1 2 π i ) ,
    8.21.3 0 t a 1 e ± i t d t = e ± 1 2 π i a Γ ( a ) , 0 < a < 1 ,
    In these representations the integration paths do not cross the negative real axis, and in the case of (8.21.4) and (8.21.5) the paths also exclude the origin. …
    8.21.12 Si ( a , ) = Γ ( a ) sin ( 1 2 π a ) , a 1 , 3 , 5 , ,
    8.21.13 Ci ( a , ) = Γ ( a ) cos ( 1 2 π a ) , a 0 , 2 , 4 , .
    18: 13.23 Integrals
    13.23.6 1 Γ ( 1 + 2 μ ) 2 π i ( 0 + ) e z t + 1 2 t 1 t κ M κ , μ ( t 1 ) d t = z κ 1 2 Γ ( 1 2 + μ κ ) I 2 μ ( 2 z ) , z > 0 .
    13.23.7 1 2 π i ( 0 + ) e z t + 1 2 t 1 t κ W κ , μ ( t 1 ) d t = 2 z κ 1 2 Γ ( 1 2 + μ κ ) Γ ( 1 2 μ κ ) K 2 μ ( 2 z ) , z > 0 .
    13.23.8 1 Γ ( 1 + 2 μ ) 0 cos ( 2 x t ) e 1 2 t 2 t 2 μ 1 M κ , μ ( t 2 ) d t = π e 1 2 x 2 x μ + κ 1 2 Γ ( 1 2 + μ + κ ) W 1 2 κ 3 2 μ , 1 2 κ + 1 2 μ ( x 2 ) , ( κ + μ ) > 1 2 .
    13.23.14 f ( x ) = 1 π i x μ 1 i μ 1 + i μ g ( μ ) Γ ( 1 2 + μ κ ) W κ , μ ( x ) d μ .
    19: 10.19 Asymptotic Expansions for Large Order
    10.19.5 ξ = ν ( tan β β ) 1 4 π ,
    10.19.9 H ν ( 1 ) ( ν + a ν 1 3 ) H ν ( 2 ) ( ν + a ν 1 3 ) } 2 4 3 ν 1 3 e π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 P k ( a ) ν 2 k / 3 + 2 5 3 ν e ± π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 Q k ( a ) ν 2 k / 3 ,
    10.19.13 H ν ( 1 ) ( ν + a ν 1 3 ) H ν ( 2 ) ( ν + a ν 1 3 ) } 2 5 3 ν 2 3 e ± π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 R k ( a ) ν 2 k / 3 + 2 4 3 ν 4 3 e π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 S k ( a ) ν 2 k / 3 ,
    20: 18.15 Asymptotic Approximations
    18.15.4 θ n , m , = 1 2 ( 2 n + α + β + m + 1 ) θ 1 2 ( α + + 1 2 ) π .
    18.15.11 θ n , m = ( n + m + λ ) θ 1 2 ( m + λ ) π .
    18.15.13 α n , m = ( n m + 1 2 ) θ + ( n 1 2 m 1 4 ) π .
    18.15.15 θ n ( α ) ( x ) = 2 ( n x ) 1 2 ( 1 2 α + 1 4 ) π .
    18.15.26 ω n , m ( x ) = μ 1 2 x 1 2 ( m + n ) π .