About the Project

cosine transform

AdvancedHelp

(0.003 seconds)

1—10 of 56 matching pages

1: 1.14 Integral Transforms
§1.14(ii) Fourier Cosine and Sine Transforms
The Fourier cosine transform and Fourier sine transform are defined respectively by
1.14.9 c ( f ) ( x ) = c f ( x ) = 2 π 0 f ( t ) cos ( x t ) d t ,
In this subsection we let F c ( x ) = c f ( x ) , F s ( x ) = s f ( x ) , G c ( x ) = c g ( x ) , and G s ( x ) = s g ( x ) . …
Table 1.14.2: Fourier cosine transforms.
f ( t ) 2 π 0 f ( t ) cos ( x t ) d t , x > 0
2: 15.17 Mathematical Applications
Harmonic analysis can be developed for the Jacobi transform either as a generalization of the Fourier-cosine transform1.14(ii)) or as a specialization of a group Fourier transform. …
3: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
Example 2: Sine and Cosine Transforms, X = [ 0 , )
The Fourier cosine and sine transform pairs (1.14.9) & (1.14.11) and (1.14.10) & (1.14.12) can be easily obtained from (1.18.57) as for ν = ± 1 2 the Bessel functions reduce to the trigonometric functions, see (10.16.1). … For f ( x ) even in x this yields the Fourier cosine transform pair (1.14.9) & (1.14.11), and for f ( x ) odd the Fourier sine transform pair (1.14.10) & (1.14.12). … …
4: Errata
  • Section 1.14

    There have been extensive changes in the notation used for the integral transforms defined in §1.14. These changes are applied throughout the DLMF. The following table summarizes the changes.

    Transform New Abbreviated Old
    Notation Notation Notation
    Fourier ( f ) ( x ) f ( x )
    Fourier Cosine c ( f ) ( x ) c f ( x )
    Fourier Sine s ( f ) ( x ) s f ( x )
    Laplace ( f ) ( s ) f ( s ) ( f ( t ) ; s )
    Mellin ( f ) ( s ) f ( s ) ( f ; s )
    Hilbert ( f ) ( s ) f ( s ) ( f ; s )
    Stieltjes 𝒮 ( f ) ( s ) 𝒮 f ( s ) 𝒮 ( f ; s )

    Previously, for the Fourier, Fourier cosine and Fourier sine transforms, either temporary local notations were used or the Fourier integrals were written out explicitly.

  • 5: 6.14 Integrals
    §6.14(i) Laplace Transforms
    6: 18.3 Definitions
    It is also related to a discrete Fourier-cosine transform, see Britanak et al. (2007). …
    7: 18.17 Integrals
    18.17.32 0 e a x x ν 1 2 n L 2 n ( ν 1 2 n ) ( a x ) cos ( x y ) d x = ( 1 ) n Γ ( ν ) 2 ( 2 n ) ! y 2 n ( ( a + i y ) ν + ( a i y ) ν ) , ν > 2 n , a > 0 .
    8: Bibliography B
  • V. Britanak, P. C. Yip, and K. R. Rao (2007) Discrete Cosine and Sine Transforms. General Properties, Fast Algorithms and Integer Approximations. Elsevier/Academic Press, Amsterdam.
  • 9: 19.7 Connection Formulas
    Reciprocal-Modulus Transformation
    Imaginary-Modulus Transformation
    E ( ϕ , i k ) = ( 1 / κ ) ( E ( θ , κ ) κ 2 ( sin θ cos θ ) ( 1 κ 2 sin 2 θ ) 1 / 2 ) ,
    Imaginary-Argument Transformation
    For two further transformations of this type see Erdélyi et al. (1953b, p. 316). …
    10: 7.14 Integrals
    7.14.5 0 e a t C ( t ) d t = 1 a f ( a π ) , a > 0 ,
    7.14.7 0 e a t C ( 2 t π ) d t = ( a 2 + 1 + a ) 1 2 2 a a 2 + 1 , a > 0 ,