About the Project

conversions between variables and parameters

AdvancedHelp

(0.003 seconds)

21—30 of 325 matching pages

21: 31.6 Path-Multiplicative Solutions
22: 31.4 Solutions Analytic at Two Singularities: Heun Functions
23: 8.17 Incomplete Beta Functions
Throughout §§8.17 and 8.18 we assume that a > 0 , b > 0 , and 0 x 1 . …
8.17.4 I x ( a , b ) = 1 I 1 x ( b , a ) .
With a > 0 , b > 0 , and 0 < x < 1 , …
8.17.13 ( a + b ) I x ( a , b ) = a I x ( a + 1 , b ) + b I x ( a , b + 1 ) ,
8.17.16 a I x ( a + 1 , b ) = ( a + c x ) I x ( a , b ) c x I x ( a 1 , b ) ,
24: 15.2 Definitions and Analytical Properties
15.2.2 𝐅 ( a , b ; c ; z ) = s = 0 ( a ) s ( b ) s Γ ( c + s ) s ! z s , | z | < 1 ,
15.2.3 𝐅 ( a , b c ; x + i 0 ) 𝐅 ( a , b c ; x i 0 ) = 2 π i Γ ( a ) Γ ( b ) ( x 1 ) c a b 𝐅 ( c a , c b c a b + 1 ; 1 x ) , x > 1 .
15.2.4 F ( m , b ; c ; z ) = n = 0 m ( m ) n ( b ) n ( c ) n n ! z n = n = 0 m ( 1 ) n ( m n ) ( b ) n ( c ) n z n .
25: 15.8 Transformations of Variable
15.8.1 𝐅 ( a , b c ; z ) = ( 1 z ) a 𝐅 ( a , c b c ; z z 1 ) = ( 1 z ) b 𝐅 ( c a , b c ; z z 1 ) = ( 1 z ) c a b 𝐅 ( c a , c b c ; z ) , | ph ( 1 z ) | < π .
15.8.12 𝐅 ( a , b ; a + b m ; z ) = ( 1 z ) m 𝐅 ( a ~ , b ~ ; a ~ + b ~ + m ; z ) , a ~ = a m , b ~ = b m .
15.8.13 F ( a , b 2 b ; z ) = ( 1 1 2 z ) a F ( 1 2 a , 1 2 a + 1 2 b + 1 2 ; ( z 2 z ) 2 ) , | ph ( 1 z ) | < π ,
15.8.14 F ( a , b 2 b ; z ) = ( 1 z ) a / 2 F ( 1 2 a , b 1 2 a b + 1 2 ; z 2 4 z 4 ) , | ph ( 1 z ) | < π .
When the intersection of two groups in Table 15.8.1 is not empty there exist special quadratic transformations, with only one free parameter, between two hypergeometric functions in the same group. …
26: 15.5 Derivatives and Contiguous Functions
15.5.12 ( b a ) F ( a , b ; c ; z ) + a F ( a + 1 , b ; c ; z ) b F ( a , b + 1 ; c ; z ) = 0 ,
27: 31.12 Confluent Forms of Heun’s Equation
31.12.1 d 2 w d z 2 + ( γ z + δ z 1 + ϵ ) d w d z + α z q z ( z 1 ) w = 0 .
31.12.2 d 2 w d z 2 + ( δ z 2 + γ z + 1 ) d w d z + α z q z 2 w = 0 .
31.12.3 d 2 w d z 2 ( γ z + δ + z ) d w d z + α z q z w = 0 .
31.12.4 d 2 w d z 2 + ( γ + z ) z d w d z + ( α z q ) w = 0 .
28: 31.2 Differential Equations
31.2.2 w ( z ) = z γ / 2 ( z 1 ) δ / 2 ( z a ) ϵ / 2 W ( z ) ,
31.2.3 d 2 W d z 2 = ( A z + B z 1 + C z a + D z 2 + E ( z 1 ) 2 + F ( z a ) 2 ) W , A + B + C = 0 ,
31.2.8 d 2 w d ζ 2 + ( ( 2 γ 1 ) cn ζ dn ζ sn ζ ( 2 δ 1 ) sn ζ dn ζ cn ζ ( 2 ϵ 1 ) k 2 sn ζ cn ζ dn ζ ) d w d ζ + 4 k 2 ( α β sn 2 ζ q ) w = 0 .
29: 28.19 Expansions in Series of me ν + 2 n Functions
28.19.2 f ( z ) = n = f n me ν + 2 n ( z , q ) ,
28.19.3 f n = 1 π 0 π f ( z ) me ν + 2 n ( z , q ) d z .
28.19.4 e i ν z = n = c 2 n ν + 2 n ( q ) me ν + 2 n ( z , q ) ,
30: 15.6 Integral Representations
15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
15.6.2_5 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.3 𝐅 ( a , b ; c ; z ) = e b π i Γ ( 1 b ) 2 π i Γ ( c b ) ( 0 + ) t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; b 1 , 2 , 3 , , ( c b ) > 0 .
15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .