About the Project

congruent points

AdvancedHelp

(0.002 seconds)

1—10 of 156 matching pages

1: 36.4 Bifurcation Sets
§36.4(i) Formulas
Critical Points for Cuspoids
Critical Points for Umbilics
This is the codimension-one surface in 𝐱 space where critical points coalesce, satisfying (36.4.1) and … This is the codimension-one surface in 𝐱 space where critical points coalesce, satisfying (36.4.2) and …
2: 22.4 Periods, Poles, and Zeros
The other poles are at congruent points, which is the set of points obtained by making translations by 2 m K + 2 n i K , where m , n . … Again, one member of each congruent set of zeros appears in the second row; all others are generated by translations of the form 2 m K + 2 n i K , where m , n . … The other poles and zeros are at the congruent points. … The set of points z = m K + n i K , m , n , comprise the lattice for the 12 Jacobian functions; all other lattice unit cells are generated by translation of the fundamental unit cell by m K + n i K , where again m , n . …
3: 9.15 Mathematical Applications
Airy functions play an indispensable role in the construction of uniform asymptotic expansions for contour integrals with coalescing saddle points, and for solutions of linear second-order ordinary differential equations with a simple turning point. …
4: 3.1 Arithmetics and Error Measures
A nonzero normalized binary floating-point machine number x is represented as … …
IEEE Standard
Rounding
5: 36.12 Uniform Approximation of Integrals
§36.12 Uniform Approximation of Integrals
§36.12(i) General Theory for Cuspoids
Correspondence between the u j ( 𝐲 ) and the t j ( 𝐱 ) is established by the order of critical points along the real axis when 𝐲 and 𝐱 are such that these critical points are all real, and by continuation when some or all of the critical points are complex. …In (36.12.10), both second derivatives vanish when critical points coalesce, but their ratio remains finite. … For further information concerning integrals with several coalescing saddle points see Arnol’d et al. (1988), Berry and Howls (1993, 1994), Bleistein (1967), Duistermaat (1974), Ludwig (1966), Olde Daalhuis (2000), and Ursell (1972, 1980).
6: 27.13 Functions
where δ 1 ( n ) and δ 3 ( n ) are the number of divisors of n congruent respectively to 1 and 3 (mod 4), and by equating coefficients in (27.13.5) and (27.13.6) Jacobi deduced that …Hence r 2 ( 5 ) = 8 because both divisors, 1 and 5 , are congruent to 1 ( mod 4 ) . …
7: 12.16 Mathematical Applications
PCFs are used as basic approximating functions in the theory of contour integrals with a coalescing saddle point and an algebraic singularity, and in the theory of differential equations with two coalescing turning points; see §§2.4(vi) and 2.8(vi). …
8: 15.11 Riemann’s Differential Equation
The most general form is given by … Here { a 1 , a 2 } , { b 1 , b 2 } , { c 1 , c 2 } are the exponent pairs at the points α , β , γ , respectively. …
15.11.3 w = P { α β γ a 1 b 1 c 1 z a 2 b 2 c 2 } .
These constants can be chosen to map any two sets of three distinct points { α , β , γ } and { α ~ , β ~ , γ ~ } onto each other. …
9: 28.7 Analytic Continuation of Eigenvalues
The only singularities are algebraic branch points, with a n ( q ) and b n ( q ) finite at these points. The number of branch points is infinite, but countable, and there are no finite limit points. …The branch points are called the exceptional values, and the other points normal values. … For a visualization of the first branch point of a 0 ( i q ^ ) and a 2 ( i q ^ ) see Figure 28.7.1. …
10: Sidebar 9.SB1: Supernumerary Rainbows
Airy invented his function in 1838 precisely to describe this phenomenon more accurately than Young had done in 1800 when pointing out that supernumerary rainbows require the wave theory of light and are impossible to explain with Newton’s picture of light as a stream of independent corpuscles. …