About the Project

complex%20variables

AdvancedHelp

(0.003 seconds)

21—30 of 34 matching pages

21: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • W. Gautschi (1970) Efficient computation of the complex error function. SIAM J. Numer. Anal. 7 (1), pp. 187–198.
  • W. Gautschi (2009) Variable-precision recurrence coefficients for nonstandard orthogonal polynomials. Numer. Algorithms 52 (3), pp. 409–418.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 22: 36.5 Stokes Sets
    The Stokes set consists of the rays ph x = ± 2 π / 3 in the complex x -plane. … This part of the Stokes set connects two complex saddles. … Red and blue numbers in each region correspond, respectively, to the numbers of real and complex critical points that contribute to the asymptotics of the canonical integral away from the bifurcation sets. In Figure 36.5.4 the part of the Stokes surface inside the bifurcation set connects two complex saddles. The distribution of real and complex critical points in Figures 36.5.5 and 36.5.6 follows from consistency with Figure 36.5.1 and the fact that there are four real saddles in the inner regions. …
    23: 10.3 Graphics
    §10.3(i) Real Order and Variable
    §10.3(ii) Real Order, Complex Variable
    See accompanying text
    Figure 10.3.14: H 5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
    See accompanying text
    Figure 10.3.16: H 5.5 ( 1 ) ( x + i y ) , 20 x 10 , 4 y 4 . … Magnify 3D Help
    §10.3(iii) Imaginary Order, Real Variable
    24: Bibliography L
  • R. E. Langer (1934) The solutions of the Mathieu equation with a complex variable and at least one parameter large. Trans. Amer. Math. Soc. 36 (3), pp. 637–695.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • N. Levinson and R. M. Redheffer (1970) Complex Variables. Holden-Day Inc., San Francisco, CA.
  • J. C. Light and T. Carrington Jr. (2000) Discrete-variable representations and their utilization. In Advances in Chemical Physics, pp. 263–310.
  • 25: 11.6 Asymptotic Expansions
    11.6.1 𝐊 ν ( z ) 1 π k = 0 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | π δ ,
    11.6.2 𝐌 ν ( z ) 1 π k = 0 ( 1 ) k + 1 Γ ( k + 1 2 ) ( 1 2 z ) ν 2 k 1 Γ ( ν + 1 2 k ) , | ph z | 1 2 π δ .
    11.6.3 0 z 𝐊 0 ( t ) d t 2 π ( ln ( 2 z ) + γ ) 2 π k = 1 ( 1 ) k + 1 ( 2 k ) ! ( 2 k 1 ) ! ( k ! ) 2 ( 2 z ) 2 k , | ph z | π δ ,
    c 3 ( λ ) = 20 λ 6 4 λ 4 ,
    26: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • L. V. Ahlfors (1966) Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable. 2nd edition, McGraw-Hill Book Co., New York.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • 27: 12.10 Uniform Asymptotic Expansions for Large Parameter
    In this section we give asymptotic expansions of PCFs for large values of the parameter a that are uniform with respect to the variable z , when both a and z ( = x ) are real. These expansions follow from Olver (1959), where detailed information is also given for complex variables. … Here bars do not denote complex conjugates; instead … (For complex values of μ and t see Olver (1959).) … The variable ζ is defined by …
    28: 19.36 Methods of Computation
    Numerical differences between the variables of a symmetric integral can be reduced in magnitude by successive factors of 4 by repeated applications of the duplication theorem, as shown by (19.26.18). … Because U 12 may be real and negative, or even complex, care is needed to ensure x = U 12 , and similarly for y and z . … Complex values of the variables are allowed, with some restrictions in the case of R J that are sufficient but not always necessary. … For computation of K ( k ) and E ( k ) with complex k see Fettis and Caslin (1969) and Morita (1978). … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). …
    29: 9.9 Zeros
    However, Bi ( z ) and Bi ( z ) each have an infinite number of complex zeros. They lie in the sectors 1 3 π < ph z < 1 2 π and 1 2 π < ph z < 1 3 π , and are denoted by β k , β k , respectively, in the former sector, and by β k ¯ , β k ¯ , in the conjugate sector, again arranged in ascending order of absolute value (modulus) for k = 1 , 2 , . See §9.3(ii) for visualizations. For the distribution in of the zeros of Ai ( z ) σ Ai ( z ) , where σ is an arbitrary complex constant, see Muraveĭ (1976) and Gil and Segura (2014). … If k is regarded as a continuous variable, then … Tables 9.9.3 and 9.9.4 give the corresponding results for the first ten complex zeros of Bi and Bi in the upper half plane. …
    30: Bibliography D
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • A. Dzieciol, S. Yngve, and P. O. Fröman (1999) Coulomb wave functions with complex values of the variable and the parameters. J. Math. Phys. 40 (12), pp. 6145–6166.