About the Project

completely multiplicative functions

AdvancedHelp

(0.004 seconds)

11—17 of 17 matching pages

11: Bibliography M
  • J. P. McClure and R. Wong (1987) Asymptotic expansion of a multiple integral. SIAM J. Math. Anal. 18 (6), pp. 1630–1637.
  • J. N. Merner (1962) Algorithm 149: Complete elliptic integral. Comm. ACM 5 (12), pp. 605.
  • L. J. Mordell (1958) On the evaluation of some multiple series. J. London Math. Soc. (2) 33, pp. 368–371.
  • T. Morita (1978) Calculation of the complete elliptic integrals with complex modulus. Numer. Math. 29 (2), pp. 233–236.
  • MPFR (free C library)
  • 12: Errata
    The spectral theory of these operators, based on Sturm-Liouville and Liouville normal forms, distribution theory, is now discussed more completely, including linear algebra, matrices, matrices as linear operators, orthonormal expansions, Stieltjes integrals/measures, generating functions. …
  • Equation (17.11.2)
    17.11.2 Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) = ( b , a x ; q ) ( c , x ; q ) n , r 0 ( a , b ; q ) n ( c / b , x ; q ) r b r y n ( q , c ; q ) n ( q ; q ) r ( a x ; q ) n + r

    The factor ( q ) r originally used in the denominator has been corrected to be ( q ; q ) r .

  • Equation (17.4.6)

    The multi-product notation ( q , c ; q ) m ( q , c ; q ) n in the denominator of the right-hand side was used.

  • Equations (17.2.22) and (17.2.23)
    17.2.22 ( q a 1 2 , q a 1 2 ; q ) n ( a 1 2 , a 1 2 ; q ) n = ( a q 2 ; q 2 ) n ( a ; q 2 ) n = 1 a q 2 n 1 a
    17.2.23 ( q a 1 k , q ω k a 1 k , , q ω k k 1 a 1 k ; q ) n ( a 1 k , ω k a 1 k , , ω k k 1 a 1 k ; q ) n = ( a q k ; q k ) n ( a ; q k ) n = 1 a q k n 1 a

    The numerators of the leftmost fractions were corrected to read ( q a 1 2 , q a 1 2 ; q ) n and ( q a 1 k , q ω k a 1 k , , q ω k k 1 a 1 k ; q ) n instead of ( q a 1 2 , a q 1 2 ; q ) n and ( a q 1 k , q ω k a 1 k , , q ω k k 1 a 1 k ; q ) n , respectively.

    Reported 2017-06-26 by Jason Zhao.

  • References

    An addition was made to the Software Index to reflect a multiple precision (MP) package written in C++ which uses a variety of different MP interfaces. See Kormanyos (2011).

  • 13: 18.36 Miscellaneous Polynomials
    These are OP’s on the interval ( 1 , 1 ) with respect to an orthogonality measure obtained by adding constant multiples of “Dirac delta weights” at 1 and 1 to the weight function for the Jacobi polynomials. …
    §18.36(iii) Multiple Orthogonal Polynomials
    This infinite set of polynomials of order n k , the smallest power of x being x k in each polynomial, is a complete orthogonal set with respect to this measure. … Completeness follows from the self-adjointness of T k , Everitt (2008). … Completeness and orthogonality follow from the self-adjointness of the corresponding Schrödinger operator, Gómez-Ullate and Milson (2014), Marquette and Quesne (2013).
    14: 3.11 Approximation Techniques
    Example
    The rational functionrequires approximately n 2 multiplications. … For many applications a spline function is a more adaptable approximating tool than the Lagrange interpolation polynomial involving a comparable number of parameters; see §3.3(i), where a single polynomial is used for interpolating f ( x ) on the complete interval [ a , b ] . … A complete spline results by composing several Bézier curves. …
    15: Bibliography
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • H. Alzer and S. Qiu (2004) Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172 (2), pp. 289–312.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1990) Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21 (2), pp. 536–549.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992a) Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23 (2), pp. 512–524.
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • 16: Bibliography O
  • S. Okui (1974) Complete elliptic integrals resulting from infinite integrals of Bessel functions. J. Res. Nat. Bur. Standards Sect. B 78B (3), pp. 113–135.
  • S. Okui (1975) Complete elliptic integrals resulting from infinite integrals of Bessel functions. II. J. Res. Nat. Bur. Standards Sect. B 79B (3-4), pp. 137–170.
  • M. N. Olevskiĭ (1950) Triorthogonal systems in spaces of constant curvature in which the equation Δ 2 u + λ u = 0 allows a complete separation of variables. Mat. Sbornik N.S. 27(69) (3), pp. 379–426 (Russian).
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • 17: Bibliography B
  • J. M. Borwein and I. J. Zucker (1992) Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind. IMA J. Numer. Anal. 12 (4), pp. 519–526.
  • R. P. Brent (1978a) A Fortran multiple-precision arithmetic package. ACM Trans. Math. Software 4 (1), pp. 57–70.
  • R. P. Brent (1976) Fast multiple-precision evaluation of elementary functions. J. Assoc. Comput. Mach. 23 (2), pp. 242–251.
  • R. Bulirsch (1969b) Numerical calculation of elliptic integrals and elliptic functions. III. Numer. Math. 13 (4), pp. 305–315.
  • R. Bulirsch (1965a) Numerical calculation of elliptic integrals and elliptic functions. II. Numer. Math. 7 (4), pp. 353–354.