About the Project

comparison with Gauss quadrature

AdvancedHelp

(0.001 seconds)

21—30 of 151 matching pages

21: Bibliography I
  • A. Iserles, S. P. Nørsett, and S. Olver (2006) Highly Oscillatory Quadrature: The Story So Far. In Numerical Mathematics and Advanced Applications, A. Bermudez de Castro and others (Eds.), pp. 97–118.
  • K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida (1991) From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics E, Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, Germany.
  • 22: 18.2 General Orthogonal Polynomials
    For usage of the zeros of an OP in Gauss quadrature see §3.5(v). … resulting in p n ( 0 ) ( x ) = p n 1 ( 1 ) ( x ) , by simple comparison of the two recursions. …
    23: 15.5 Derivatives and Contiguous Functions
    The six functions F ( a ± 1 , b ; c ; z ) , F ( a , b ± 1 ; c ; z ) , F ( a , b ; c ± 1 ; z ) are said to be contiguous to F ( a , b ; c ; z ) .
    15.5.11 ( c a ) F ( a 1 , b ; c ; z ) + ( 2 a c + ( b a ) z ) F ( a , b ; c ; z ) + a ( z 1 ) F ( a + 1 , b ; c ; z ) = 0 ,
    15.5.12 ( b a ) F ( a , b ; c ; z ) + a F ( a + 1 , b ; c ; z ) b F ( a , b + 1 ; c ; z ) = 0 ,
    By repeated applications of (15.5.11)–(15.5.18) any function F ( a + k , b + ; c + m ; z ) , in which k , , m are integers, can be expressed as a linear combination of F ( a , b ; c ; z ) and any one of its contiguous functions, with coefficients that are rational functions of a , b , c , and z . …
    15.5.20 z ( 1 z ) ( d F ( a , b ; c ; z ) / d z ) = ( c a ) F ( a 1 , b ; c ; z ) + ( a c + b z ) F ( a , b ; c ; z ) = ( c b ) F ( a , b 1 ; c ; z ) + ( b c + a z ) F ( a , b ; c ; z ) ,
    24: Bibliography S
  • R. P. Sagar (1991a) A Gaussian quadrature for the calculation of generalized Fermi-Dirac integrals. Comput. Phys. Comm. 66 (2-3), pp. 271–275.
  • B. Simon (2005c) Sturm oscillation and comparison theorems. In Sturm-Liouville theory, pp. 29–43.
  • A. H. Stroud and D. Secrest (1966) Gaussian Quadrature Formulas. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 25: 2.4 Contour Integrals
    For large t , the asymptotic expansion of q ( t ) may be obtained from (2.4.3) by Haar’s method. This depends on the availability of a comparison function F ( z ) for Q ( z ) that has an inverse transform
    2.4.6 f ( t ) = 1 2 π i lim η σ i η σ + i η e t z F ( z ) d z
    2.4.7 q ( t ) f ( t ) = e σ t 2 π lim η η η e i t τ ( Q ( σ + i τ ) F ( σ + i τ ) ) d τ .
    2.4.8 q ( t ) = f ( t ) + o ( e c t ) , t + .
    2.4.9 q ( t ) = f ( t ) + o ( t m e c t ) , t + .
    26: 15.3 Graphics
    See accompanying text
    Figure 15.3.1: F ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
    See accompanying text
    Figure 15.3.2: F ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
    See accompanying text
    Figure 15.3.3: F ( 1 , 10 ; 10 ; x ) , 3 x 1 . Magnify
    See accompanying text
    Figure 15.3.4: F ( 5 , 10 ; 1 ; x ) , 1 x 0.022 . Magnify
    See accompanying text
    Figure 15.3.5: F ( 4 3 , 9 16 ; 14 5 ; x + i y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
    27: 16.12 Products
    16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
    28: 15.4 Special Cases
    F ( a , b ; a ; z ) = ( 1 z ) b ,
    F ( a , b ; b ; z ) = ( 1 z ) a ,
    29: 5.21 Methods of Computation
    Another approach is to apply numerical quadrature3.5) to the integral (5.9.2), using paths of steepest descent for the contour. …
    30: 15.1 Special Notation