About the Project

combined

AdvancedHelp

(0.001 seconds)

31—40 of 163 matching pages

31: 19.20 Special Cases
19.20.5 2 R G ( x , y , y ) = y R C ( x , y ) + x .
19.20.13 2 ( p x ) R J ( x , y , z , p ) = 3 R F ( x , y , z ) 3 x R C ( y z , p 2 ) , p = x ± ( y x ) ( z x ) ,
19.20.14 ( q + z ) R J ( x , y , z , q ) = ( p z ) R J ( x , y , z , p ) 3 R F ( x , y , z ) + 3 ( x y z x y + p q ) 1 / 2 R C ( x y + p q , p q ) ,
19.20.20 R D ( x , y , y ) = 3 2 ( y x ) ( R C ( x , y ) x y ) , x y , y 0 ,
19.20.21 R D ( x , x , z ) = 3 z x ( R C ( z , x ) 1 z ) , x z , x z 0 .
32: 10.38 Derivatives with Respect to Order
10.38.1 I ± ν ( z ) ν = ± I ± ν ( z ) ln ( 1 2 z ) ( 1 2 z ) ± ν k = 0 ψ ( k + 1 ± ν ) Γ ( k + 1 ± ν ) ( 1 4 z 2 ) k k ! ,
For I ν ( z ) / ν at ν = n combine (10.38.1), (10.38.2), and (10.38.4). …
33: 10.8 Power Series
When ν is not an integer the corresponding expansions for Y ν ( z ) , H ν ( 1 ) ( z ) , and H ν ( 2 ) ( z ) are obtained by combining (10.2.2) with (10.2.3), (10.4.7), and (10.4.8). …
34: 10.29 Recurrence Relations and Derivatives
35: 26.1 Special Notation
x real variable.
36: 8.17 Incomplete Beta Functions
Further integral representations can be obtained by combining the results given in §8.17(ii) with §15.6. …
37: 10.65 Power Series
When ν is not an integer combine (10.65.1) with (10.61.6). …
38: 19.27 Asymptotic Approximations and Expansions
19.27.13 R J ( x , y , z , p ) = 3 2 z p ( ln ( 8 z a + g ) 2 R C ( 1 , p z ) + O ( ( a z + a p ) ln p a ) ) , max ( x , y ) / min ( z , p ) 0 .
19.27.14 R J ( x , y , z , p ) = 3 y z R C ( x , p ) 6 y z R G ( 0 , y , z ) + O ( x + 2 p y z ) , max ( x , p ) / min ( y , z ) 0 .
19.27.16 R J ( x , y , z , p ) = ( 3 / x ) R C ( ( h + p ) 2 , 2 ( b + h ) p ) + O ( 1 x 3 / 2 ln x b + h ) , max ( y , z , p ) / x 0 .
39: 13.8 Asymptotic Approximations for Large Parameters
When the foregoing results are combined with Kummer’s transformation (13.2.39), an approximation is obtained for the case when | b | is large, and | b a | and | z | are bounded. … To obtain approximations for M ( a , b , z ) and U ( a , b , z ) that hold as b , with a > 1 2 b and z > 0 combine (13.14.4), (13.14.5) with §13.20(i). Also, more complicated—but more powerful—uniform asymptotic approximations can be obtained by combining (13.14.4), (13.14.5) with §§13.20(iii) and 13.20(iv). … For asymptotic approximations to M ( a , b , x ) and U ( a , b , x ) as a that hold uniformly with respect to x ( 0 , ) and bounded positive values of ( b 1 ) / | a | , combine (13.14.4), (13.14.5) with §§13.21(ii), 13.21(iii). …
13.8.16 ( k + 1 ) c k + 1 ( z ) + s = 0 k ( b B s + 1 ( s + 1 ) ! + z ( s + 1 ) B s + 2 ( s + 2 ) ! ) c k s ( z ) = 0 , k = 0 , 1 , 2 , .
40: 10.49 Explicit Formulas