About the Project

circular trigonometric functions

AdvancedHelp

(0.039 seconds)

11—20 of 285 matching pages

11: 4.18 Inequalities
4.18.1 2 x π sin x x , 0 x 1 2 π .
4.18.2 x tan x , 0 x < 1 2 π ,
4.18.3 cos x sin x x 1 , 0 x π ,
4.18.4 π < sin ( π x ) x ( 1 x ) 4 , 0 < x < 1 .
12: 4.26 Integrals
4.26.3 tan x d x = ln ( cos x ) , 1 2 π < x < 1 2 π .
4.26.10 0 π cos ( m t ) cos ( n t ) d t = 0 , m n ,
4.26.11 0 π sin 2 ( n t ) d t = 0 π cos 2 ( n t ) d t = 1 2 π , n 0 .
13: 19.2 Definitions
19.2.16 el3 ( x , k c , p ) = 0 arctan x d θ ( cos 2 θ + p sin 2 θ ) cos 2 θ + k c 2 sin 2 θ = Π ( arctan x , 1 p , k ) , x 2 1 / p .
19.2.18 R C ( x , y ) = 1 y x arctan y x x = 1 y x arccos x / y , 0 x < y ,
19.2.19 R C ( x , y ) = 1 x y arctanh x y x = 1 x y ln x + x y y , 0 < y < x .
19.2.20 R C ( x , y ) = x x y R C ( x y , y ) = 1 x y arctanh x x y = 1 x y ln x + x y y , y < 0 x .
14: 7.14 Integrals
7.14.5 0 e a t C ( t ) d t = 1 a f ( a π ) , a > 0 ,
7.14.6 0 e a t S ( t ) d t = 1 a g ( a π ) , a > 0 ,
15: 19.11 Addition Theorems
19.11.6_5 R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) .
16: 4.28 Definitions and Periodicity
The functions sinh z and cosh z have period 2 π i , and tanh z has period π i . …
17: 4.36 Infinite Products and Partial Fractions
4.36.1 sinh z = z n = 1 ( 1 + z 2 n 2 π 2 ) ,
4.36.2 cosh z = n = 1 ( 1 + 4 z 2 ( 2 n 1 ) 2 π 2 ) .
4.36.3 coth z = 1 z + 2 z n = 1 1 z 2 + n 2 π 2 ,
4.36.4 csch 2 z = n = 1 ( z n π i ) 2 ,
4.36.5 csch z = 1 z + 2 z n = 1 ( 1 ) n z 2 + n 2 π 2 .
18: 7.4 Symmetry
f ( z ) = 2 cos ( 1 4 π + 1 2 π z 2 ) f ( z ) ,
g ( z ) = 2 sin ( 1 4 π + 1 2 π z 2 ) g ( z ) .
19: 4.45 Methods of Computation
4.45.11 arctan x = π 2 1 x + 1 3 x 3 1 5 x 5 + ;
20: 11.10 Anger–Weber Functions
11.10.6 f ( ν , z ) = ( z ν ) π z 2 sin ( π ν ) , w = 𝐉 ν ( z ) ,
11.10.7 f ( ν , z ) = 1 π z 2 ( z + ν + ( z ν ) cos ( π ν ) ) , w = 𝐄 ν ( z ) .
11.10.9 𝐄 ν ( z ) = sin ( 1 2 π ν ) S 1 ( ν , z ) cos ( 1 2 π ν ) S 2 ( ν , z ) ,
11.10.13 sin ( π ν ) 𝐉 ν ( z ) = cos ( π ν ) 𝐄 ν ( z ) 𝐄 ν ( z ) ,
11.10.18 𝐄 ν ( z ) = 1 π ( 1 + cos ( π ν ) ) s 0 , ν ( z ) ν π ( 1 cos ( π ν ) ) s 1 , ν ( z ) .