About the Project

cash app customer service number %2B1%28888%E2%80%92481%E2%80%924477%29

AdvancedHelp

(0.005 seconds)

21—30 of 844 matching pages

21: 27.2 Functions
where p 1 , p 2 , , p ν ( n ) are the distinct prime factors of n , each exponent a r is positive, and ν ( n ) is the number of distinct primes dividing n . … (See Gauss (1863, Band II, pp. 437–477) and Legendre (1808, p. 394).) … The ϕ ( n ) numbers a , a 2 , , a ϕ ( n ) are relatively prime to n and distinct (mod n ). … …
§27.2(ii) Tables
22: Bibliography G
  • K. Girstmair (1990a) A theorem on the numerators of the Bernoulli numbers. Amer. Math. Monthly 97 (2), pp. 136–138.
  • K. Girstmair (1990b) Dirichlet convolution of cotangent numbers and relative class number formulas. Monatsh. Math. 110 (3-4), pp. 231–256.
  • J. W. L. Glaisher (1940) Number-Divisor Tables. British Association Mathematical Tables, Vol. VIII, Cambridge University Press, Cambridge, England.
  • V. V. Golubev (1960) Lectures on Integration of the Equations of Motion of a Rigid Body About a Fixed Point. Translated from the Russian by J. Shorr-Kon, Office of Technical Services, U. S. Department of Commerce, Washington, D.C..
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • 23: 24.10 Arithmetic Properties
    §24.10 Arithmetic Properties
    The denominator of B 2 n is the product of all these primes p . …
    §24.10(ii) Kummer Congruences
    §24.10(iii) Voronoi’s Congruence
    §24.10(iv) Factors
    24: 26.8 Set Partitions: Stirling Numbers
    §26.8 Set Partitions: Stirling Numbers
    §26.8(i) Definitions
    s ( n , k ) denotes the Stirling number of the first kind: ( 1 ) n k times the number of permutations of { 1 , 2 , , n } with exactly k cycles. … S ( n , k ) denotes the Stirling number of the second kind: the number of partitions of { 1 , 2 , , n } into exactly k nonempty subsets. …
    §26.8(vi) Relations to Bernoulli Numbers
    25: 24.14 Sums
    §24.14 Sums
    §24.14(i) Quadratic Recurrence Relations
    §24.14(ii) Higher-Order Recurrence Relations
    In the following two identities, valid for n 2 , the sums are taken over all nonnegative integers j , k , with j + k + = n . … For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
    26: 26.21 Tables
    §26.21 Tables
    Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ( n , k ) and S ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ( n ) and partitions into distinct parts p ( 𝒟 , n ) for n up to 500. Andrews (1976) contains tables of the number of unrestricted partitions, partitions into odd parts, partitions into parts ± 2 ( mod 5 ) , partitions into parts ± 1 ( mod 5 ) , and unrestricted plane partitions up to 100. It also contains a table of Gaussian polynomials up to [ 12 6 ] q . Goldberg et al. (1976) contains tables of binomial coefficients to n = 100 and Stirling numbers to n = 40 .
    27: 26.13 Permutations: Cycle Notation
    The number of elements of 𝔖 n with cycle type ( a 1 , a 2 , , a n ) is given by (26.4.7). The Stirling cycle numbers of the first kind, denoted by [ n k ] , count the number of permutations of { 1 , 2 , , n } with exactly k cycles. They are related to Stirling numbers of the first kind by …See §26.8 for generating functions, recurrence relations, identities, and asymptotic approximations. … The derangement number, d ( n ) , is the number of elements of 𝔖 n with no fixed points: …
    28: Bibliography F
  • V. N. Faddeeva and N. M. Terent’ev (1954) Tablicy značeniĭ funkcii w ( z ) = e z 2 ( 1 + 2 i π 0 z e t 2 𝑑 t ) ot kompleksnogo argumenta. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (Russian).
  • H. E. Fettis and J. C. Caslin (1969) A Table of the Complete Elliptic Integral of the First Kind for Complex Values of the Modulus. Part I. Technical report Technical Report ARL 69-0172, Aerospace Research Laboratories, Office of Aerospace Research, Wright-Patterson Air Force Base, Ohio.
  • S. Fillebrown (1992) Faster computation of Bernoulli numbers. J. Algorithms 13 (3), pp. 431–445.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie (1962) An Index of Mathematical Tables. Vols. I, II. 2nd edition, Published for Scientific Computing Service Ltd., London, by Addison-Wesley Publishing Co., Inc., Reading, MA.
  • Y. V. Fyodorov (2005) Introduction to the Random Matrix Theory: Gaussian Unitary Ensemble and Beyond. In Recent Perspectives in Random Matrix Theory and Number Theory, London Math. Soc. Lecture Note Ser., Vol. 322, pp. 31–78.
  • 29: 26.1 Special Notation
    ( m n ) binomial coefficient.
    m n Eulerian number.
    B ( n ) Bell number.
    C ( n ) Catalan number.
    Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
    30: Bibliography W
  • S. S. Wagstaff (2002) Prime Divisors of the Bernoulli and Euler Numbers. In Number Theory for the Millennium, III (Urbana, IL, 2000), pp. 357–374.
  • G. N. Watson (1935a) Generating functions of class-numbers. Compositio Math. 1, pp. 39–68.
  • R. J. Wells (1999) Rapid approximation to the Voigt/Faddeeva function and its derivatives. J. Quant. Spect. and Rad. Transfer 62 (1), pp. 29–48.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • World Combinatorics Exchange (website)