About the Project

beta function

AdvancedHelp

(0.008 seconds)

31—40 of 179 matching pages

31: 35.4 Partitions and Zonal Polynomials
32: 14.3 Definitions and Hypergeometric Representations
In terms of the Gegenbauer function C α ( β ) ( x ) and the Jacobi function ϕ λ ( α , β ) ( t ) (§§15.9(iii), 15.9(ii)): …
14.3.23 P ν μ ( x ) = 1 Γ ( 1 μ ) ( x + 1 x 1 ) μ / 2 ϕ i ( 2 ν + 1 ) ( μ , μ ) ( arcsinh ( ( 1 2 x 1 2 ) 1 / 2 ) ) .
33: 18.15 Asymptotic Approximations
18.15.1 ( sin 1 2 θ ) α + 1 2 ( cos 1 2 θ ) β + 1 2 P n ( α , β ) ( cos θ ) = π 1 2 2 n + α + β + 1 B ( n + α + 1 , n + β + 1 ) ( m = 0 M 1 f m ( θ ) 2 m ( 2 n + α + β + 2 ) m + O ( n M ) ) ,
Also, B ( a , b ) is the beta function5.12) and
18.15.2 f m ( θ ) = = 0 m C m , ( α , β ) ! ( m ) ! cos θ n , m , ( sin 1 2 θ ) ( cos 1 2 θ ) m ,
18.15.4_5 ( sin 1 2 θ ) α + 1 2 ( cos 1 2 θ ) β + 1 2 P n ( α , β ) ( cos θ ) = π 1 2 n 1 2 cos ( 1 2 ( 2 n + α + β + 1 ) θ 1 4 ( 2 α + 1 ) π ) + O ( n 3 2 ) , α , β ,
18.15.6 ( sin 1 2 θ ) α + 1 2 ( cos 1 2 θ ) β + 1 2 P n ( α , β ) ( cos θ ) = Γ ( n + α + 1 ) 2 1 2 ρ α n ! ( θ 1 2 J α ( ρ θ ) m = 0 M A m ( θ ) ρ 2 m + θ 3 2 J α + 1 ( ρ θ ) m = 0 M 1 B m ( θ ) ρ 2 m + 1 + ε M ( ρ , θ ) ) ,
34: Bibliography G
  • W. Gautschi (1964a) Algorithm 222: Incomplete beta function ratios. Comm. ACM 7 (3), pp. 143–144.
  • 35: Bibliography K
  • D. A. Kofke (2004) Comment on “The incomplete beta function law for parallel tempering sampling of classical canonical systems” [J. Chem. Phys. 120, 4119 (2004)]. J. Chem. Phys. 121 (2), pp. 1167.
  • T. H. Koornwinder (1984b) Orthogonal polynomials with weight function ( 1 x ) α ( 1 + x ) β + M δ ( x + 1 ) + N δ ( x 1 ) . Canad. Math. Bull. 27 (2), pp. 205–214.
  • 36: 24.9 Inequalities
    24.9.9 β = 2 + ln ( 1 6 π 2 ) ln 2 = 0.6491 .
    37: 18.17 Integrals
    18.17.9 ( 1 x ) α + μ P n ( α + μ , β μ ) ( x ) Γ ( α + μ + n + 1 ) = x 1 ( 1 y ) α P n ( α , β ) ( y ) Γ ( α + n + 1 ) ( y x ) μ 1 Γ ( μ ) d y , μ > 0 , 1 < x < 1 ,
    18.17.10 x β + μ ( x + 1 ) n Γ ( β + μ + n + 1 ) P n ( α , β + μ ) ( x 1 x + 1 ) = 0 x y β ( y + 1 ) n Γ ( β + n + 1 ) P n ( α , β ) ( y 1 y + 1 ) ( x y ) μ 1 Γ ( μ ) d y , μ > 0 , x > 0 ,
    18.17.11 Γ ( n + α + β μ + 1 ) x n + α + β μ + 1 P n ( α , β μ ) ( 1 2 x 1 ) = x Γ ( n + α + β + 1 ) y n + α + β + 1 P n ( α , β ) ( 1 2 y 1 ) ( y x ) μ 1 Γ ( μ ) d y , α + β + 1 > μ > 0 , x > 1 ,
    18.17.16 1 1 ( 1 x ) α ( 1 + x ) β P n ( α , β ) ( x ) e i x y d x = ( i y ) n e i y n ! 2 n + α + β + 1 B ( n + α + 1 , n + β + 1 ) F 1 1 ( n + α + 1 ; 2 n + α + β + 2 ; 2 i y ) .
    For the beta function B ( a , b ) see §5.12, and for the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. …
    38: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    39: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    35.8.13 𝟎 < 𝐗 < 𝐈 | 𝐗 | a 1 1 2 ( m + 1 ) | 𝐈 𝐗 | b 1 a 1 1 2 ( m + 1 ) F q p ( a 2 , , a p + 1 b 2 , , b q + 1 ; 𝐓 𝐗 ) d 𝐗 = 1 B m ( b 1 a 1 , a 1 ) F q + 1 p + 1 ( a 1 , , a p + 1 b 1 , , b q + 1 ; 𝐓 ) , ( b 1 a 1 ) , ( a 1 ) > 1 2 ( m 1 ) .
    40: Bibliography I
  • M. E. H. Ismail and D. R. Masson (1994) q -Hermite polynomials, biorthogonal rational functions, and q -beta integrals. Trans. Amer. Math. Soc. 346 (1), pp. 63–116.