About the Project

best uniform polynomial approximation

AdvancedHelp

(0.002 seconds)

31—40 of 378 matching pages

31: 18.32 OP’s with Respect to Freud Weights
§18.32 OP’s with Respect to Freud Weights
However, for asymptotic approximations in terms of elementary functions for the OP’s, and also for their largest zeros, see Levin and Lubinsky (2001) and Nevai (1986). For a uniform asymptotic expansion in terms of Airy functions (§9.2) for the OP’s in the case Q ( x ) = x 4 see Bo and Wong (1999). For asymptotic approximations to OP’s that correspond to Freud weights with more general functions Q ( x ) see Deift et al. (1999a, b), Bleher and Its (1999), and Kriecherbauer and McLaughlin (1999). …
32: Bibliography P
  • B. V. Paltsev (1999) On two-sided estimates, uniform with respect to the real argument and index, for modified Bessel functions. Mat. Zametki 65 (5), pp. 681–692 (Russian).
  • R. B. Paris (2002a) Error bounds for the uniform asymptotic expansion of the incomplete gamma function. J. Comput. Appl. Math. 147 (1), pp. 215–231.
  • R. B. Paris (2002b) A uniform asymptotic expansion for the incomplete gamma function. J. Comput. Appl. Math. 148 (2), pp. 323–339.
  • R. Piessens (1984a) Chebyshev series approximations for the zeros of the Bessel functions. J. Comput. Phys. 53 (1), pp. 188–192.
  • M. J. D. Powell (1967) On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria. Comput. J. 9 (4), pp. 404–407.
  • 33: Bibliography O
  • A. B. Olde Daalhuis and N. M. Temme (1994) Uniform Airy-type expansions of integrals. SIAM J. Math. Anal. 25 (2), pp. 304–321.
  • A. B. Olde Daalhuis (1998c) On the resurgence properties of the uniform asymptotic expansion of the incomplete gamma function. Methods Appl. Anal. 5 (4), pp. 425–438.
  • A. B. Olde Daalhuis (2000) On the asymptotics for late coefficients in uniform asymptotic expansions of integrals with coalescing saddles. Methods Appl. Anal. 7 (4), pp. 727–745.
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • 34: 18.35 Pollaczek Polynomials
    §18.35 Pollaczek Polynomials
    There are 3 types of Pollaczek polynomials: … For the monic polynomialsThis expansion is in terms of the Airy function Ai ( x ) and its derivative (§9.2), and is uniform in any compact θ -interval in ( 0 , ) . Also included is an asymptotic approximation for the zeros of P n ( 1 2 ) ( cos ( n 1 2 θ ) ; a , b ) . …
    35: Bibliography N
  • G. Nemes and A. B. Olde Daalhuis (2016) Uniform asymptotic expansion for the incomplete beta function. SIGMA Symmetry Integrability Geom. Methods Appl. 12, pp. 101, 5 pages.
  • G. Németh (1992) Mathematical Approximation of Special Functions. Nova Science Publishers Inc., Commack, NY.
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • J. N. Newman (1984) Approximations for the Bessel and Struve functions. Math. Comp. 43 (168), pp. 551–556.
  • M. Noumi and J. V. Stokman (2004) Askey-Wilson polynomials: an affine Hecke algebra approach. In Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, pp. 111–144.
  • 36: Bibliography K
  • D. Karp and S. M. Sitnik (2007) Asymptotic approximations for the first incomplete elliptic integral near logarithmic singularity. J. Comput. Appl. Math. 205 (1), pp. 186–206.
  • S. F. Khwaja and A. B. Olde Daalhuis (2012) Uniform asymptotic approximations for the Meixner-Sobolev polynomials. Anal. Appl. (Singap.) 10 (3), pp. 345–361.
  • S. F. Khwaja and A. B. Olde Daalhuis (2013) Exponentially accurate uniform asymptotic approximations for integrals and Bleistein’s method revisited. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469 (2153), pp. 20130008, 12.
  • U. J. Knottnerus (1960) Approximation Formulae for Generalized Hypergeometric Functions for Large Values of the Parameters. J. B. Wolters, Groningen.
  • V. I. Krylov and N. S. Skoblya (1985) A Handbook of Methods of Approximate Fourier Transformation and Inversion of the Laplace Transformation. Mir, Moscow.
  • 37: 19.38 Approximations
    §19.38 Approximations
    Minimax polynomial approximations3.11(i)) for K ( k ) and E ( k ) in terms of m = k 2 with 0 m < 1 can be found in Abramowitz and Stegun (1964, §17.3) with maximum absolute errors ranging from 4×10⁻⁵ to 2×10⁻⁸. Approximations of the same type for K ( k ) and E ( k ) for 0 < k 1 are given in Cody (1965a) with maximum absolute errors ranging from 4×10⁻⁵ to 4×10⁻¹⁸. … Approximations for Legendre’s complete or incomplete integrals of all three kinds, derived by Padé approximation of the square root in the integrand, are given in Luke (1968, 1970). …The accuracy is controlled by the number of terms retained in the approximation; for real variables the number of significant figures appears to be roughly twice the number of terms retained, perhaps even for ϕ near π / 2 with the improvements made in the 1970 reference. …
    38: 18.40 Methods of Computation
    §18.40(i) Computation of Polynomials
    Orthogonal polynomials can be computed from their explicit polynomial form by Horner’s scheme (§1.11(i)). Usually, however, other methods are more efficient, especially the numerical solution of difference equations (§3.6) and the application of uniform asymptotic expansions (when available) for OP’s of large degree. …
    Stieltjes Inversion via (approximate) Analytic Continuation
    In Figure 18.40.2 the approximations were carried out with a precision of 50 decimal digits.
    39: 7.24 Approximations
    §7.24 Approximations
    §7.24(i) Approximations in Terms of Elementary Functions
  • Hastings (1955) gives several minimax polynomial and rational approximations for erf x , erfc x and the auxiliary functions f ( x ) and g ( x ) .

  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody (1968) gives minimax rational approximations for the Fresnel integrals (maximum relative precision 19S); for a Fortran algorithm and comments see Snyder (1993).

  • 40: 36.15 Methods of Computation
    Close to the bifurcation set but far from 𝐱 = 𝟎 , the uniform asymptotic approximations of §36.12 can be used. … This can be carried out by direct numerical evaluation of canonical integrals along a finite segment of the real axis including all real critical points of Φ , with contributions from the contour outside this range approximated by the first terms of an asymptotic series associated with the endpoints. …