About the Project

axially symmetric potential theory

AdvancedHelp

(0.001 seconds)

11—20 of 204 matching pages

11: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • B. Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen.
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • K. H. Rosen (2004) Elementary Number Theory and its Applications. 5th edition, Addison-Wesley, Reading, MA.
  • G. Rota (1964) On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2, pp. 340–368.
  • 12: 14.31 Other Applications
    §14.31(ii) Conical Functions
    These functions are also used in the Mehler–Fock integral transform (§14.20(vi)) for problems in potential and heat theory, and in elementary particle physics (Sneddon (1972, Chapter 7) and Braaksma and Meulenbeld (1967)). …
    13: 18.39 Applications in the Physical Sciences
    defines the potential for a symmetric restoring force k x for displacements from x = 0 . … argument b) The Morse Oscillator … c) A Rational SUSY Potential argument The Schrödinger equation with potentialNow use spherical coordinates (1.5.16) with r instead of ρ , and assume the potential V to be radial. …
    14: Bibliography E
  • C. Eckart (1930) The penetration of a potential barrier by electrons. Phys. Rev. 35 (11), pp. 1303–1309.
  • W. N. Everitt (1982) On the transformation theory of ordinary second-order linear symmetric differential expressions. Czechoslovak Math. J. 32(107) (2), pp. 275–306.
  • W. N. Everitt (2005a) A catalogue of Sturm-Liouville differential equations. In Sturm-Liouville theory, pp. 271–331.
  • W. N. Everitt (2005b) Charles Sturm and the development of Sturm-Liouville theory in the years 1900 to 1950. In Sturm-Liouville theory, pp. 45–74.
  • 15: Bibliography D
  • H. Davenport (2000) Multiplicative Number Theory. 3rd edition, Graduate Texts in Mathematics, Vol. 74, Springer-Verlag, New York.
  • N. G. de Bruijn (1981) Pólya’s Theory of Counting. In Applied Combinatorial Mathematics, E. F. Beckenbach (Ed.), pp. 144–184.
  • L. Dekar, L. Chetouani, and T. F. Hammann (1999) Wave function for smooth potential and mass step. Phys. Rev. A 59 (1), pp. 107–112.
  • H. Ding, K. I. Gross, and D. St. P. Richards (1996) Ramanujan’s master theorem for symmetric cones. Pacific J. Math. 175 (2), pp. 447–490.
  • R. Dutt, A. Khare, and U. P. Sukhatme (1988) Supersymmetry, shape invariance, and exactly solvable potentials. Amer. J. Phys. 56, pp. 163–168.
  • 16: Bille C. Carlson
    If some of the parameters are equal, then the R -function is symmetric in the corresponding variables. This symmetry led to the development of symmetric elliptic integrals, which are free from the transformations of modulus and amplitude that complicate the Legendre theory. Symmetric integrals and their degenerate cases allow greatly shortened integral tables and improved algorithms for numerical computation. … This invariance usually replaces sets of twelve equations by sets of three equations and applies also to the relation between the first symmetric elliptic integral and the Jacobian functions. …
    17: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    Self-Adjoint and Symmetric Operators
    One then needs a self-adjoint extension of a symmetric operator to carry out its spectral theory in a mathematically rigorous manner. … which appear in the quantum theory of binding or scattering of a particle in a spherically symmetric potential V ( r ) in three dimensions, and where r [ 0 , ) . … A linear operator T with dense domain is called symmetric if …
    Self-adjoint extensions of a symmetric Operator
    18: Bibliography G
  • V. X. Genest, L. Vinet, and A. Zhedanov (2016) The non-symmetric Wilson polynomials are the Bannai-Ito polynomials. Proc. Amer. Math. Soc. 144 (12), pp. 5217–5226.
  • J. S. Geronimo, O. Bruno, and W. Van Assche (2004) WKB and turning point theory for second-order difference equations. In Spectral Methods for Operators of Mathematical Physics, Oper. Theory Adv. Appl., Vol. 154, pp. 101–138.
  • R. G. Gordon (1970) Constructing wavefunctions for nonlocal potentials. J. Chem. Phys. 52, pp. 6211–6217.
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • E. P. Gross and S. Ziering (1958) Kinetic theory of linear shear flow. Phys. Fluids 1 (3), pp. 215–224.
  • 19: Bibliography Q
  • W. Qiu and R. Wong (2004) Asymptotic expansion of the Krawtchouk polynomials and their zeros. Comput. Methods Funct. Theory 4 (1), pp. 189–226.
  • C. Quesne (2011) Higher-Order SUSY, Exactly Solvable Potentials, and Exceptional Orthogonal Polynomials. Modern Physics Letters A 26, pp. 1843–1852.
  • 20: 33.22 Particle Scattering and Atomic and Molecular Spectra
    At positive energies E > 0 , ρ 0 , and: … R = m e c α 2 / ( 2 ) . … Both variable sets may be used for attractive and repulsive potentials: the ( ϵ , r ) set cannot be used for a zero potential because this would imply r = 0 for all s , and the ( η , ρ ) set cannot be used for zero energy E because this would imply ρ = 0 always. …
    §33.22(vi) Solutions Inside the Turning Point