About the Project

asymptotic forms

AdvancedHelp

(0.003 seconds)

21—30 of 102 matching pages

21: 2.8 Differential Equations with a Parameter
β–ΊThe form of the asymptotic expansion depends on the nature of the transition points in 𝐃 , that is, points at which f ⁑ ( z ) has a zero or singularity. …
22: Bibliography L
β–Ί
  • J. N. Lyness (1971) Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature. Math. Comp. 25 (113), pp. 87–104.
  • 23: 26.5 Lattice Paths: Catalan Numbers
    β–Ί
    §26.5(iv) Limiting Forms
    β–Ί
    26.5.6 C ⁑ ( n ) 4 n Ο€ ⁒ n 3 , n ,
    24: 10.57 Uniform Asymptotic Expansions for Large Order
    §10.57 Uniform Asymptotic Expansions for Large Order
    β–ΊAsymptotic expansions for 𝗃 n ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗒 n ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗁 n ( 1 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗁 n ( 2 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , 𝗂 n ( 1 ) ⁑ ( ( n + 1 2 ) ⁒ z ) , and 𝗄 n ⁑ ( ( n + 1 2 ) ⁒ z ) as n that are uniform with respect to z can be obtained from the results given in §§10.20 and 10.41 by use of the definitions (10.47.3)–(10.47.7) and (10.47.9). …
    25: 2.9 Difference Equations
    §2.9 Difference Equations
    β–ΊFor asymptotic expansions in inverse factorial series see Olde Daalhuis (2004a). β–Ί
    §2.9(ii) Coincident Characteristic Values
    β–ΊFor analogous results for difference equations of the formβ–Ί
    26: 18.34 Bessel Polynomials
    β–Ί
    18.34.8 lim α P n ( α , a α 2 ) ⁑ ( 1 + α ⁒ x ) P n ( α , a α 2 ) ⁑ ( 1 ) = y n ⁑ ( x ; a ) .
    β–ΊIn this limit the finite system of Jacobi polynomials P n ( Ξ± , Ξ² ) ⁑ ( x ) which is orthogonal on ( 1 , ) (see §18.3) tends to the finite system of Romanovski–Bessel polynomials which is orthogonal on ( 0 , ) (see (18.34.5_5)). β–ΊFor uniform asymptotic expansions of y n ⁑ ( x ; a ) as n in terms of Airy functions (§9.2) see Wong and Zhang (1997) and Dunster (2001c). For uniform asymptotic expansions in terms of Hermite polynomials see López and Temme (1999b). …
    27: 33.11 Asymptotic Expansions for Large ρ
    §33.11 Asymptotic Expansions for Large ρ
    28: 7.12 Asymptotic Expansions
    §7.12 Asymptotic Expansions
    β–Ί
    §7.12(i) Complementary Error Function
    β–Ί
    §7.12(ii) Fresnel Integrals
    β–ΊThe asymptotic expansions of C ⁑ ( z ) and S ⁑ ( z ) are given by (7.5.3), (7.5.4), and … β–Ί
    §7.12(iii) Goodwin–Staton Integral
    29: 28.8 Asymptotic Expansions for Large q
    β–Ί
    28.8.4 U m ⁑ ( ΞΎ ) D m ⁑ ( ΞΎ ) 1 2 6 ⁒ h ⁒ ( D m + 4 ⁑ ( ΞΎ ) 4 ! ⁒ ( m 4 ) ⁒ D m 4 ⁑ ( ΞΎ ) ) + 1 2 13 ⁒ h 2 ⁒ ( D m + 8 ⁑ ( ΞΎ ) 2 5 ⁒ ( m + 2 ) ⁒ D m + 4 ⁑ ( ΞΎ ) + 4 ! ⁒  2 5 ⁒ ( m 1 ) ⁒ ( m 4 ) ⁒ D m 4 ⁑ ( ΞΎ ) + 8 ! ⁒ ( m 8 ) ⁒ D m 8 ⁑ ( ΞΎ ) ) + β‹― ,
    β–Ί
    28.8.6 C ^ m ( Ο€ ⁒ h 2 ⁒ ( m ! ) 2 ) 1 / 4 ⁒ ( 1 + 2 ⁒ m + 1 8 ⁒ h + m 4 + 2 ⁒ m 3 + 263 ⁒ m 2 + 262 ⁒ m + 108 2048 ⁒ h 2 + β‹― ) 1 / 2 ,
    β–Ί
    28.8.7 S ^ m ( Ο€ ⁒ h 2 ⁒ ( m ! ) 2 ) 1 / 4 ⁒ ( 1 2 ⁒ m + 1 8 ⁒ h + m 4 + 2 ⁒ m 3 121 ⁒ m 2 122 ⁒ m 84 2048 ⁒ h 2 + β‹― ) 1 / 2 .
    β–Ί
    28.8.11 P m ⁑ ( x ) 1 + s 2 3 ⁒ h ⁒ cos 2 ⁑ x + 1 h 2 ⁒ ( s 4 + 86 ⁒ s 2 + 105 2 11 ⁒ cos 4 ⁑ x s 4 + 22 ⁒ s 2 + 57 2 11 ⁒ cos 2 ⁑ x ) + β‹― ,
    β–Ί
    28.8.12 Q m ⁑ ( x ) sin ⁑ x cos 2 ⁑ x ⁒ ( 1 2 5 ⁒ h ⁒ ( s 2 + 3 ) + 1 2 9 ⁒ h 2 ⁒ ( s 3 + 3 ⁒ s + 4 ⁒ s 3 + 44 ⁒ s cos 2 ⁑ x ) ) + β‹― .
    30: 8.20 Asymptotic Expansions of E p ⁑ ( z )
    §8.20 Asymptotic Expansions of E p ⁑ ( z )
    β–Ί
    §8.20(i) Large z
    β–ΊWhere the sectors of validity of (8.20.2) and (8.20.3) overlap the contribution of the first term on the right-hand side of (8.20.3) is exponentially small compared to the other contribution; compare §2.11(ii). β–ΊFor an exponentially-improved asymptotic expansion of E p ⁑ ( z ) see §2.11(iii). β–Ί
    §8.20(ii) Large p