About the Project

asymptotic approximations for large zeros

AdvancedHelp

(0.004 seconds)

21—30 of 37 matching pages

21: Bibliography O
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • A. B. Olde Daalhuis (2003b) Uniform asymptotic expansions for hypergeometric functions with large parameters. II. Analysis and Applications (Singapore) 1 (1), pp. 121–128.
  • F. W. J. Olver (1951) A further method for the evaluation of zeros of Bessel functions and some new asymptotic expansions for zeros of functions of large order. Proc. Cambridge Philos. Soc. 47, pp. 699–712.
  • F. W. J. Olver (1980a) Asymptotic approximations and error bounds. SIAM Rev. 22 (2), pp. 188–203.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • 22: 3.8 Nonlinear Equations
    For real functions f ( x ) the sequence of approximations to a real zero ξ will always converge (and converge quadratically) if either: … Let z 2 s z t be an approximation to the real quadratic factor of p ( z ) that corresponds to a pair of conjugate complex zeros or to a pair of real zeros. … Initial approximations to the zeros can often be found from asymptotic or other approximations to f ( z ) , or by application of the phase principle or Rouché’s theorem; see §1.10(iv). … For describing the distribution of complex zeros of solutions of linear homogeneous second-order differential equations by methods based on the Liouville–Green (WKB) approximation, see Segura (2013). … For moderate or large values of n it is not uncommon for the magnitude of the right-hand side of (3.8.14) to be very large compared with unity, signifying that the computation of zeros of polynomials is often an ill-posed problem. …
    23: Bibliography Z
  • M. R. Zaghloul (2017) Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function. ACM Trans. Math. Softw. 44 (2), pp. 22:1–22:9.
  • A. Zarzo, J. S. Dehesa, and R. J. Yañez (1995) Distribution of zeros of Gauss and Kummer hypergeometric functions. A semiclassical approach. Ann. Numer. Math. 2 (1-4), pp. 457–472.
  • J. Zhang (1996) A note on the τ -method approximations for the Bessel functions Y 0 ( z ) and Y 1 ( z ) . Comput. Math. Appl. 31 (9), pp. 63–70.
  • J. Zhang and J. A. Belward (1997) Chebyshev series approximations for the Bessel function Y n ( z ) of complex argument. Appl. Math. Comput. 88 (2-3), pp. 275–286.
  • W. Zudilin (2007) Approximations to -, di- and tri-logarithms. J. Comput. Appl. Math. 202 (2), pp. 450–459.
  • 24: Bibliography P
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • R. Piessens (1984a) Chebyshev series approximations for the zeros of the Bessel functions. J. Comput. Phys. 53 (1), pp. 188–192.
  • R. Piessens and S. Ahmed (1986) Approximation for the turning points of Bessel functions. J. Comput. Phys. 64 (1), pp. 253–257.
  • M. J. D. Powell (1967) On the maximum errors of polynomial approximations defined by interpolation and by least squares criteria. Comput. J. 9 (4), pp. 404–407.
  • P. J. Prince (1975) Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 1 (4), pp. 372–379.
  • 25: 2.7 Differential Equations
    For large s , …
    §2.7(iii) Liouville–Green (WKBJ) Approximation
    For irregular singularities of nonclassifiable rank, a powerful tool for finding the asymptotic behavior of solutions, complete with error bounds, is as follows: … By approximatingThe first of these references includes extensions to complex variables and reversions for zeros. …
    26: Bibliography L
  • A. Laforgia and M. E. Muldoon (1983) Inequalities and approximations for zeros of Bessel functions of small order. SIAM J. Math. Anal. 14 (2), pp. 383–388.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013a) Asymptotics of the first Appell function F 1 with large parameters II. Integral Transforms Spec. Funct. 24 (12), pp. 982–999.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013b) Asymptotics of the first Appell function F 1 with large parameters. Integral Transforms Spec. Funct. 24 (9), pp. 715–733.
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • J. L. López and N. M. Temme (2010b) Large degree asymptotics of generalized Bernoulli and Euler polynomials. J. Math. Anal. Appl. 363 (1), pp. 197–208.
  • 27: Bibliography J
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • J. H. Johnson and J. M. Blair (1973) REMES2 — a Fortran program to calculate rational minimax approximations to a given function. Technical Report Technical Report AECL-4210, Atomic Energy of Canada Limited. Chalk River Nuclear Laboratories, Chalk River, Ontario.
  • D. S. Jones (1972) Asymptotic behavior of integrals. SIAM Rev. 14 (2), pp. 286–317.
  • D. S. Jones (2006) Parabolic cylinder functions of large order. J. Comput. Appl. Math. 190 (1-2), pp. 453–469.
  • S. Jorna and C. Springer (1971) Derivation of Green-type, transitional and uniform asymptotic expansions from differential equations. V. Angular oblate spheroidal wavefunctions p s ¯ n r ( η , h ) and q s ¯ n r ( η , h ) for large h . Proc. Roy. Soc. London Ser. A 321, pp. 545–555.
  • 28: 9.17 Methods of Computation
    For large | z | the asymptotic expansions of §§9.7 and 9.12(viii) should be used instead. …
    §9.17(v) Zeros
    Zeros of the Airy functions, and their derivatives, can be computed to high precision via Newton’s rule (§3.8(ii)) or Halley’s rule (§3.8(v)), using values supplied by the asymptotic expansions of §9.9(iv) as initial approximations. …See also Fabijonas et al. (2004). For the computation of the zeros of the Scorer functions and their derivatives see Gil et al. (2003c).
    29: 14.20 Conical (or Mehler) Functions
    §14.20(vii) Asymptotic Approximations: Large τ , Fixed μ
    For asymptotic expansions and explicit error bounds, see Olver (1997b, pp. 473–474). …
    §14.20(viii) Asymptotic Approximations: Large τ , 0 μ A τ
    §14.20(ix) Asymptotic Approximations: Large μ , 0 τ A μ
    §14.20(x) Zeros and Integrals
    30: 10.74 Methods of Computation
    For large positive real values of ν the uniform asymptotic expansions of §§10.20(i) and 10.20(ii) can be used. Moreover, because of their double asymptotic properties (§10.41(v)) these expansions can also be used for large x or | z | , whether or not ν is large. … Methods for obtaining initial approximations to the zeros include asymptotic expansions (§§10.21(vi)-10.21(ix)), graphical intersection of 2 D graphs in (e. …
    Real Zeros
    Complex Zeros