About the Project

asymptotic approximations for large zeros

AdvancedHelp

(0.005 seconds)

11—20 of 37 matching pages

11: 28.34 Methods of Computation
  • (b)

    Use of asymptotic expansions and approximations for large q (§§28.8(i), 28.16). See also Zhang and Jin (1996, pp. 482–485).

  • (e)

    Solution of the continued-fraction equations (28.6.16)–(28.6.19) and (28.15.2) by successive approximation. See Blanch (1966), Shirts (1993a), and Meixner and Schäfke (1954, §2.87).

  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation (§28.31(i)) and eigenvalues of Lamé functions (§29.3(i)).

  • (b)

    Use of asymptotic expansions and approximations for large q (§§28.8(ii)28.8(iv)).

  • (c)

    Use of asymptotic expansions for large z or large q . See §§28.25 and 28.26.

  • 12: 8.13 Zeros
    §8.13 Zeros
    For asymptotic approximations for x + ( a ) and x ( a ) as a see Tricomi (1950b), with corrections by Kölbig (1972b). For more accurate asymptotic approximations see Thompson (2012). … For information on the distribution and computation of zeros of γ ( a , λ a ) and Γ ( a , λ a ) in the complex λ -plane for large values of the positive real parameter a see Temme (1995a). … Approximations to a n , x n for large n can be found in Kölbig (1970). …
    13: 6.18 Methods of Computation
    For large x or | z | these series suffer from slow convergence or cancellation (or both). … For large x and | z | , expansions in inverse factorial series (§6.10(i)) or asymptotic expansions (§6.12) are available. The attainable accuracy of the asymptotic expansions can be increased considerably by exponential improvement. …
    §6.18(iii) Zeros
    Zeros of Ci ( x ) and si ( x ) can be computed to high precision by Newton’s rule (§3.8(ii)), using values supplied by the asymptotic expansion (6.13.2) as initial approximations. …
    14: 2.4 Contour Integrals
    §2.4(i) Watson’s Lemma
    For examples see Olver (1997b, pp. 315–320).
    §2.4(iii) Laplace’s Method
    §2.4(v) Coalescing Saddle Points: Chester, Friedman, and Ursell’s Method
    §2.4(vi) Other Coalescing Critical Points
    15: Bibliography T
  • N. M. Temme and A. B. Olde Daalhuis (1990) Uniform asymptotic approximation of Fermi-Dirac integrals. J. Comput. Appl. Math. 31 (3), pp. 383–387.
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N. M. Temme (1987) On the computation of the incomplete gamma functions for large values of the parameters. In Algorithms for approximation (Shrivenham, 1985), Inst. Math. Appl. Conf. Ser. New Ser., Vol. 10, pp. 479–489.
  • N. M. Temme (1994b) Computational aspects of incomplete gamma functions with large complex parameters. In Approximation and Computation. A Festschrift in Honor of Walter Gautschi, R. V. M. Zahar (Ed.), International Series of Numerical Mathematics, Vol. 119, pp. 551–562.
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • 16: Bibliography N
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • G. Nemes (2015b) On the large argument asymptotics of the Lommel function via Stieltjes transforms. Asymptot. Anal. 91 (3-4), pp. 265–281.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • G. Nemes (2018) Error bounds for the large-argument asymptotic expansions of the Lommel and allied functions. Stud. Appl. Math. 140 (4), pp. 508–541.
  • 17: 2.3 Integrals of a Real Variable
    Then … For the Fourier integral …
    §2.3(iv) Method of Stationary Phase
    §2.3(v) Coalescing Peak and Endpoint: Bleistein’s Method
    §2.3(vi) Asymptotics of Mellin Transforms
    18: 34.8 Approximations for Large Parameters
    §34.8 Approximations for Large Parameters
    For large values of the parameters in the 3 j , 6 j , and 9 j symbols, different asymptotic forms are obtained depending on which parameters are large. … and the symbol o ( 1 ) denotes a quantity that tends to zero as the parameters tend to infinity, as in §2.1(i). Semiclassical (WKBJ) approximations in terms of trigonometric or exponential functions are given in Varshalovich et al. (1988, §§8.9, 9.9, 10.7). Uniform approximations in terms of Airy functions for the 3 j and 6 j symbols are given in Schulten and Gordon (1975b). …
    19: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • B. C. Carlson and J. L. Gustafson (1994) Asymptotic approximations for symmetric elliptic integrals. SIAM J. Math. Anal. 25 (2), pp. 288–303.
  • Y. Chen and M. E. H. Ismail (1998) Asymptotics of the largest zeros of some orthogonal polynomials. J. Phys. A 31 (25), pp. 5525–5544.
  • J. A. Cochran (1963) Further formulas for calculating approximate values of the zeros of certain combinations of Bessel functions. IEEE Trans. Microwave Theory Tech. 11 (6), pp. 546–547.
  • J. A. Cochran (1966b) The asymptotic nature of zeros of cross-product Bessel functions. Quart. J. Mech. Appl. Math. 19 (4), pp. 511–522.
  • 20: 2.8 Differential Equations with a Parameter
    Zeros of f ( z ) are also called turning points. … In both cases uniform asymptotic approximations are obtained in terms of Bessel functions of order 1 / ( λ + 2 ) . … For further examples of uniform asymptotic approximations in terms of parabolic cylinder functions see §§13.20(iii), 13.20(iv), 14.15(v), 15.12(iii), 18.24. For further examples of uniform asymptotic approximations in terms of Bessel functions or modified Bessel functions of variable order see §§13.21(ii), 14.15(ii), 14.15(iv), 14.20(viii), 30.9(i), 30.9(ii). For examples of uniform asymptotic approximations in terms of Whittaker functions with fixed second parameter see §18.15(i) and §28.8(iv). …