About the Project

asymptotic approximations and expansions for large %7Cr%7C

AdvancedHelp

(0.001 seconds)

31—40 of 232 matching pages

31: 10.72 Mathematical Applications
Bessel functions and modified Bessel functions are often used as approximants in the construction of uniform asymptotic approximations and expansions for solutions of linear second-order differential equations containing a parameter. … In regions in which (10.72.1) has a simple turning point z 0 , that is, f ( z ) and g ( z ) are analytic (or with weaker conditions if z = x is a real variable) and z 0 is a simple zero of f ( z ) , asymptotic expansions of the solutions w for large u can be constructed in terms of Airy functions or equivalently Bessel functions or modified Bessel functions of order 1 3 9.6(i)). … If f ( z ) has a double zero z 0 , or more generally z 0 is a zero of order m , m = 2 , 3 , 4 , , then uniform asymptotic approximations (but not expansions) can be constructed in terms of Bessel functions, or modified Bessel functions, of order 1 / ( m + 2 ) . … In regions in which the function f ( z ) has a simple pole at z = z 0 and ( z z 0 ) 2 g ( z ) is analytic at z = z 0 (the case λ = 1 in §10.72(i)), asymptotic expansions of the solutions w of (10.72.1) for large u can be constructed in terms of Bessel functions and modified Bessel functions of order ± 1 + 4 ρ , where ρ is the limiting value of ( z z 0 ) 2 g ( z ) as z z 0 . … Then for large u asymptotic approximations of the solutions w can be constructed in terms of Bessel functions, or modified Bessel functions, of variable order (in fact the order depends on u and α ). …
32: 12.9 Asymptotic Expansions for Large Variable
§12.9 Asymptotic Expansions for Large Variable
12.9.1 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s , | ph z | 3 4 π δ ( < 3 4 π ) ,
12.9.2 V ( a , z ) 2 π e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , | ph z | 1 4 π δ ( < 1 4 π ) .
12.9.3 U ( a , z ) e 1 4 z 2 z a 1 2 s = 0 ( 1 ) s ( 1 2 + a ) 2 s s ! ( 2 z 2 ) s ± i 2 π Γ ( 1 2 + a ) e i π a e 1 4 z 2 z a 1 2 s = 0 ( 1 2 a ) 2 s s ! ( 2 z 2 ) s , 1 4 π + δ ± ph z 5 4 π δ ,
§12.9(ii) Bounds and Re-Expansions for the Remainder Terms
33: 34.8 Approximations for Large Parameters
§34.8 Approximations for Large Parameters
For large values of the parameters in the 3 j , 6 j , and 9 j symbols, different asymptotic forms are obtained depending on which parameters are large. …
34: 11.11 Asymptotic Expansions of Anger–Weber Functions
§11.11 Asymptotic Expansions of Anger–Weber Functions
§11.11(i) Large | z | , Fixed ν
§11.11(ii) Large | ν | , Fixed z
Lastly, corresponding asymptotic approximations and expansions for 𝐉 ν ( λ ν ) and 𝐄 ν ( λ ν ) , with 0 < λ < 1 or λ > 1 , follow from (11.10.15) and (11.10.16) and the corresponding asymptotic expansions for the Bessel functions J ν ( z ) and Y ν ( z ) ; see §10.19(ii). …
35: Bibliography F
  • S. Farid Khwaja and A. B. Olde Daalhuis (2014) Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (6), pp. 667–710.
  • J. L. Fields and Y. L. Luke (1963a) Asymptotic expansions of a class of hypergeometric polynomials with respect to the order. II. J. Math. Anal. Appl. 7 (3), pp. 440–451.
  • J. L. Fields (1973) Uniform asymptotic expansions of certain classes of Meijer G -functions for a large parameter. SIAM J. Math. Anal. 4 (3), pp. 482–507.
  • J. L. Fields (1983) Uniform asymptotic expansions of a class of Meijer G -functions for a large parameter. SIAM J. Math. Anal. 14 (6), pp. 1204–1253.
  • C. L. Frenzen (1987b) On the asymptotic expansion of Mellin transforms. SIAM J. Math. Anal. 18 (1), pp. 273–282.
  • 36: Bibliography L
  • C. Leubner and H. Ritsch (1986) A note on the uniform asymptotic expansion of integrals with coalescing endpoint and saddle points. J. Phys. A 19 (3), pp. 329–335.
  • X. Li and R. Wong (1994) Error bounds for asymptotic expansions of Laplace convolutions. SIAM J. Math. Anal. 25 (6), pp. 1537–1553.
  • J. L. López (2001) Uniform asymptotic expansions of symmetric elliptic integrals. Constr. Approx. 17 (4), pp. 535–559.
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • D. Ludwig (1966) Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19, pp. 215–250.
  • 37: 10.19 Asymptotic Expansions for Large Order
    §10.19 Asymptotic Expansions for Large Order
    §10.19(i) Asymptotic Forms
    §10.19(ii) Debye’s Expansions
    §10.19(iii) Transition Region
    See also §10.20(i).
    38: 15.12 Asymptotic Approximations
    §15.12(i) Large Variable
    §15.12(ii) Large c
    As λ , … If | ph ( z 1 ) | < π , then as λ with | ph λ | π δ , … For other extensions, see Wagner (1986), Temme (2003) and Temme (2015, Chapters 12 and 28).
    39: 8.11 Asymptotic Approximations and Expansions
    §8.11 Asymptotic Approximations and Expansions
    where δ denotes an arbitrary small positive constant. … For an exponentially-improved asymptotic expansion2.11(iii)) see Olver (1991a). … With x = 1 , an asymptotic expansion of e n ( n x ) / e n x follows from (8.11.14) and (8.11.16). …
    40: 28.34 Methods of Computation
  • (b)

    Use of asymptotic expansions and approximations for large q (§§28.8(i), 28.16). See also Zhang and Jin (1996, pp. 482–485).

  • (b)

    Use of asymptotic expansions and approximations for large q (§§28.8(ii)28.8(iv)).

  • (c)

    Use of asymptotic expansions for large z or large q . See §§28.25 and 28.26.