About the Project

associated Legendre equation

AdvancedHelp

(0.004 seconds)

21—30 of 37 matching pages

21: Bibliography C
  • P. A. Clarkson and E. L. Mansfield (2003) The second Painlevé equation, its hierarchy and associated special polynomials. Nonlinearity 16 (3), pp. R1–R26.
  • P. A. Clarkson (2003a) The third Painlevé equation and associated special polynomials. J. Phys. A 36 (36), pp. 9507–9532.
  • P. A. Clarkson (2003b) The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44 (11), pp. 5350–5374.
  • H. S. Cohl and R. S. Costas-Santos (2020) Multi-Integral Representations for Associated Legendre and Ferrers Functions. Symmetry 12 (10).
  • H. S. Cohl (2011) On parameter differentiation for integral representations of associated Legendre functions. SIGMA Symmetry Integrability Geom. Methods Appl. 7, pp. Paper 050, 16.
  • 22: 14.32 Methods of Computation
    §14.32 Methods of Computation
  • Numerical integration (§3.7) of the defining differential equations (14.2.2), (14.20.1), and (14.21.1).

  • 23: Bibliography O
  • K. Okamoto (1987a) Studies on the Painlevé equations. I. Sixth Painlevé equation P VI . Ann. Mat. Pura Appl. (4) 146, pp. 337–381.
  • K. Okamoto (1987b) Studies on the Painlevé equations. II. Fifth Painlevé equation P V . Japan. J. Math. (N.S.) 13 (1), pp. 47–76.
  • F. W. J. Olver and J. M. Smith (1983) Associated Legendre functions on the cut. J. Comput. Phys. 51 (3), pp. 502–518.
  • F. W. J. Olver (Ed.) (1960) Bessel Functions. Part III: Zeros and Associated Values. Royal Society Mathematical Tables, Volume 7, Cambridge University Press, Cambridge-New York.
  • F. W. J. Olver (1975b) Legendre functions with both parameters large. Philos. Trans. Roy. Soc. London Ser. A 278, pp. 175–185.
  • 24: 14.5 Special Values
    14.5.14 𝖰 ν 1 / 2 ( cos θ ) = ( π 2 sin θ ) 1 / 2 cos ( ( ν + 1 2 ) θ ) ν + 1 2 .
    25: 14.18 Sums
    §14.18 Sums
    §14.18(ii) Addition Theorems
    Dougall’s Expansion
    26: Bibliography B
  • P. Barrucand and D. Dickinson (1968) On the Associated Legendre Polynomials. In Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), pp. 43–50.
  • S. L. Belousov (1962) Tables of Normalized Associated Legendre Polynomials. Pergamon Press, The Macmillan Co., Oxford-New York.
  • S. Bielski (2013) Orthogonality relations for the associated Legendre functions of imaginary order. Integral Transforms Spec. Funct. 24 (4), pp. 331–337.
  • W. G. C. Boyd (1990a) Asymptotic Expansions for the Coefficient Functions Associated with Linear Second-order Differential Equations: The Simple Pole Case. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 124, pp. 53–73.
  • W. J. Braithwaite (1973) Associated Legendre polynomials, ordinary and modified spherical harmonics. Comput. Phys. Comm. 5 (5), pp. 390–394.
  • 27: 30.6 Functions of Complex Argument
    Relations to Associated Legendre Functions
    𝑃𝑠 n m ( z , 0 ) = P n m ( z ) ,
    𝑄𝑠 n m ( z , 0 ) = Q n m ( z ) ;
    For results for Equation (30.2.1) with complex parameters see Meixner and Schäfke (1954).
    28: Bibliography V
  • J. Van Deun and R. Cools (2008) Integrating products of Bessel functions with an additional exponential or rational factor. Comput. Phys. Comm. 178 (8), pp. 578–590.
  • G. Vedeler (1950) A Mathieu equation for ships rolling among waves. I, II. Norske Vid. Selsk. Forh., Trondheim 22 (25–26), pp. 113–123.
  • N. Virchenko and I. Fedotova (2001) Generalized Associated Legendre Functions and their Applications. World Scientific Publishing Co. Inc., Singapore.
  • H. Volkmer (1998) On the growth of convergence radii for the eigenvalues of the Mathieu equation. Math. Nachr. 192, pp. 239–253.
  • A. P. Vorob’ev (1965) On the rational solutions of the second Painlevé equation. Differ. Uravn. 1 (1), pp. 79–81 (Russian).
  • 29: 14.15 Uniform Asymptotic Approximations
    §14.15 Uniform Asymptotic Approximations
    §14.15(i) Large μ , Fixed ν
    For asymptotic expansions and explicit error bounds, see Dunster (2003b).
    §14.15(iii) Large ν , Fixed μ
    30: Bille C. Carlson
     2013) was Professor Emeritus in the Department of Mathematics and Associate of the Ames Laboratory (U. … This symmetry led to the development of symmetric elliptic integrals, which are free from the transformations of modulus and amplitude that complicate the Legendre theory. … This invariance usually replaces sets of twelve equations by sets of three equations and applies also to the relation between the first symmetric elliptic integral and the Jacobian functions. …