About the Project

as functions of parameters

AdvancedHelp

(0.014 seconds)

21—30 of 376 matching pages

21: 28.26 Asymptotic Approximations for Large q
§28.26 Asymptotic Approximations for Large q
28.26.1 Mc m ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fc m ( z , h ) i Gc m ( z , h ) ) ,
28.26.2 i Ms m + 1 ( 3 ) ( z , h ) = e i ϕ ( π h cosh z ) 1 / 2 ( Fs m ( z , h ) i Gs m ( z , h ) ) ,
28.26.3 ϕ = 2 h sinh z ( m + 1 2 ) arctan ( sinh z ) .
§28.26(ii) Uniform Approximations
22: 20.10 Integrals
§20.10(i) Mellin Transforms with respect to the Lattice Parameter
§20.10(ii) Laplace Transforms with respect to the Lattice Parameter
20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
23: 28.22 Connection Formulas
28.22.9 f e , m ( h ) = π / 2 g e , m ( h ) Mc m ( 2 ) ( 0 , h ) ,
28.22.13 M ν ( 1 ) ( z , h ) = M ν ( 1 ) ( 0 , h ) me ν ( 0 , h 2 ) Me ν ( z , h 2 ) .
28.22.14 M ν ( 2 ) ( z , h ) = cot ( ν π ) M ν ( 1 ) ( z , h ) 1 sin ( ν π ) M ν ( 1 ) ( z , h ) .
24: Bibliography O
  • A. B. Olde Daalhuis (2003a) Uniform asymptotic expansions for hypergeometric functions with large parameters. I. Analysis and Applications (Singapore) 1 (1), pp. 111–120.
  • A. B. Olde Daalhuis (2003b) Uniform asymptotic expansions for hypergeometric functions with large parameters. II. Analysis and Applications (Singapore) 1 (1), pp. 121–128.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1975b) Legendre functions with both parameters large. Philos. Trans. Roy. Soc. London Ser. A 278, pp. 175–185.
  • F. W. J. Olver (1980b) Whittaker functions with both parameters large: Uniform approximations in terms of parabolic cylinder functions. Proc. Roy. Soc. Edinburgh Sect. A 86 (3-4), pp. 213–234.
  • 25: 31.18 Methods of Computation
    The computation of the accessory parameter for the Heun functions is carried out via the continued-fraction equations (31.4.2) and (31.11.13) in the same way as for the Mathieu, Lamé, and spheroidal wave functions in Chapters 2830.
    26: 28.19 Expansions in Series of me ν + 2 n Functions
    28.19.2 f ( z ) = n = f n me ν + 2 n ( z , q ) ,
    28.19.3 f n = 1 π 0 π f ( z ) me ν + 2 n ( z , q ) d z .
    28.19.4 e i ν z = n = c 2 n ν + 2 n ( q ) me ν + 2 n ( z , q ) ,
    27: 33.16 Connection Formulas
    33.16.6 f ( ϵ , ; r ) = ( 1 ) + 1 ( 2 π τ e 2 π / τ 1 A ( ϵ , ) ) 1 / 2 F ( 1 / τ , τ r ) ,
    33.16.11 h ( ϵ , ; r ) = ( 1 ) ν + 1 A ( ϵ , ) ( sin ( π ν ) ζ ( ν , r ) Γ ( + 1 + ν ) + cos ( π ν ) Γ ( ν ) ξ ( ν , r ) π ) .
    33.16.13 h ( ϵ , ; r ) = ( 1 ) ν + 1 A ( ϵ , ) Γ ( ν ) ζ ( ν , r ) / π .
    28: 16.7 Relations to Other Functions
    Further representations of special functions in terms of F q p functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of F q q + 1 functions with rational numbers as parameters is given in Krupnikov and Kölbig (1997).
    29: 28.24 Expansions in Series of Cross-Products of Bessel Functions or Modified Bessel Functions
    28.24.1 c 2 n ν ( h 2 ) M ν ( j ) ( z , h ) = = ( 1 ) c 2 ν ( h 2 ) J n ( h e z ) 𝒞 ν + n + ( j ) ( h e z ) ,
    28.24.2 ε s Mc 2 m ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) A 2 2 m ( h 2 ) A 2 s 2 m ( h 2 ) ( J s ( h e z ) 𝒞 + s ( j ) ( h e z ) + J + s ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    28.24.3 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) A 2 + 1 2 m + 1 ( h 2 ) A 2 s + 1 2 m + 1 ( h 2 ) ( J s ( h e z ) 𝒞 + s + 1 ( j ) ( h e z ) + J + s + 1 ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    28.24.4 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m = 0 ( 1 ) B 2 + 1 2 m + 1 ( h 2 ) B 2 s + 1 2 m + 1 ( h 2 ) ( J s ( h e z ) 𝒞 + s + 1 ( j ) ( h e z ) J + s + 1 ( h e z ) 𝒞 s ( j ) ( h e z ) ) ,
    For further power series of Mathieu radial functions of integer order for small parameters and improved convergence rate see Larsen et al. (2009).
    30: 8.12 Uniform Asymptotic Expansions for Large Parameter
    §8.12 Uniform Asymptotic Expansions for Large Parameter
    8.12.3 P ( a , z ) = 1 2 erfc ( η a / 2 ) S ( a , η ) ,
    8.12.16 e ± π i a 2 i sin ( π a ) Q ( a , a e ± π i ) ± 1 2 i 2 π a k = 0 c k ( 0 ) ( a ) k , | ph a | π δ ,
    Inverse Function
    8.12.21 Q ( a , x ) = q