About the Project

as functions of parameters

AdvancedHelp

(0.016 seconds)

11—20 of 376 matching pages

11: 28.10 Integral Equations
28.10.2 2 π 0 π / 2 cosh ( 2 h sin z sin t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 0 , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.3 2 π 0 π / 2 sin ( 2 h cos z cos t ) ce 2 n + 1 ( t , h 2 ) d t = h A 1 2 n + 1 ( h 2 ) ce 2 n + 1 ( 1 2 π , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
28.10.4 2 π 0 π / 2 cos z cos t cosh ( 2 h sin z sin t ) ce 2 n + 1 ( t , h 2 ) d t = A 1 2 n + 1 ( h 2 ) 2 ce 2 n + 1 ( 0 , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
28.10.5 2 π 0 π / 2 sinh ( 2 h sin z sin t ) se 2 n + 1 ( t , h 2 ) d t = h B 1 2 n + 1 ( h 2 ) se 2 n + 1 ( 0 , h 2 ) se 2 n + 1 ( z , h 2 ) ,
28.10.8 2 π 0 π / 2 cos z cos t sinh ( 2 h sin z sin t ) se 2 n + 2 ( t , h 2 ) d t = h B 2 2 n + 2 ( h 2 ) 2 se 2 n + 2 ( 0 , h 2 ) se 2 n + 2 ( z , h 2 ) .
12: 28.23 Expansions in Series of Bessel Functions
28.23.2 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = n = ( 1 ) n c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
28.23.3 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = i tanh z n = ( 1 ) n ( ν + 2 n ) c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
28.23.5 me ν ( 1 2 π , h 2 ) M ν ( j ) ( z , h ) = i e i ν π / 2 coth z n = ( ν + 2 n ) c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h sinh z ) ,
28.23.6 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h cosh z ) ,
13: 8.18 Asymptotic Expansions of I x ( a , b )
Symmetric Case
8.18.9 I x ( a , b ) 1 2 erfc ( η b / 2 ) + 1 2 π ( a + b ) ( x x 0 ) a ( 1 x 1 x 0 ) b k = 0 ( 1 ) k c k ( η ) ( a + b ) k ,
General Case
Inverse Function
8.18.18 I x ( a , b ) = p , 0 p 1 ,
14: 28.20 Definitions and Basic Properties
28.20.15 Mc n ( j ) ( z , h ) = M n ( j ) ( z , h ) , n = 0 , 1 , ,
28.20.17 Ie n ( z , h ) = i n Mc n ( 1 ) ( z , i h ) ,
28.20.18 Io n ( z , h ) = i n Ms n ( 1 ) ( z , i h ) ,
15: 31.4 Solutions Analytic at Two Singularities: Heun Functions
For an infinite set of discrete values q m , m = 0 , 1 , 2 , , of the accessory parameter q , the function H ( a , q ; α , β , γ , δ ; z ) is analytic at z = 1 , and hence also throughout the disk | z | < a . …
16: 36.3 Visualizations of Canonical Integrals
Figure 36.3.2: Modulus of swallowtail canonical integral function | Ψ 3 ( x , y , 3 ) | . …
Figure 36.3.3: Modulus of swallowtail canonical integral function | Ψ 3 ( x , y , 0 ) | . …
Figure 36.3.4: Modulus of swallowtail canonical integral function | Ψ 3 ( x , y , 3 ) | . …
Figure 36.3.5: Modulus of swallowtail canonical integral function | Ψ 3 ( x , y , 7.5 ) | . …
Figure 36.3.6: Modulus of elliptic umbilic canonical integral function | Ψ ( E ) ( x , y , 0 ) | . …
17: 28.28 Integrals, Integral Representations, and Integral Equations
28.28.2 1 2 π 0 2 π e 2 i h w ce n ( t , h 2 ) d t = i n ce n ( α , h 2 ) Mc n ( 1 ) ( z , h ) ,
28.28.15 0 cos ( 2 h cos y cosh t ) Ce 2 n ( t , h 2 ) d t = ( 1 ) n + 1 1 2 π Mc 2 n ( 2 ) ( 0 , h ) ce 2 n ( y , h 2 ) ,
28.28.16 0 sin ( 2 h cos y cosh t ) Ce 2 n ( t , h 2 ) d t = π A 0 2 n ( h 2 ) 2 ce 2 n ( 1 2 π , h 2 ) ( ce 2 n ( y , h 2 ) 2 π C 2 n ( h 2 ) fe 2 n ( y , h 2 ) ) ,
18: 32.6 Hamiltonian Structure
32.6.21 ( z σ ′′ σ ) 2 + 2 ( ( σ ) 2 κ 0 2 κ 2 z 2 ) ( z σ 2 σ ) + 8 κ 0 κ θ 0 θ z σ = 4 κ 0 2 κ 2 ( θ 0 2 + θ 2 ) z 2 .
32.6.22 q = κ 0 ( z σ ′′ ( 2 θ 0 + 1 ) σ + 2 κ 0 κ θ z ) κ 0 2 κ 2 z 2 ( σ ) 2 ,
32.6.30 q = η 0 ( ζ σ ′′ 2 θ 0 σ + η 0 η θ ) η 0 2 η 2 4 ( σ ) 2 ,
32.6.37 ( z σ ′′ σ ) 2 + 2 ( σ ) 2 ( z σ 2 σ ) 4 κ 0 κ ( θ + 1 ) θ z σ = 4 κ 0 2 κ 2 z 2 .
32.6.38 q = κ 0 ( z σ ′′ θ σ + 2 κ 0 κ z ) / ( σ ) 2 ,
19: 16.2 Definition and Analytic Properties
However, when one or more of the top parameters a j is a nonpositive integer the series terminates and the generalized hypergeometric function is a polynomial in z . …
§16.2(v) Behavior with Respect to Parameters
16.2.5 𝐅 q p ( 𝐚 ; 𝐛 ; z ) = F q p ( a 1 , , a p b 1 , , b q ; z ) / ( Γ ( b 1 ) Γ ( b q ) ) = k = 0 ( a 1 ) k ( a p ) k Γ ( b 1 + k ) Γ ( b q + k ) z k k ! ;
When p q + 1 and z is fixed and not a branch point, any branch of 𝐅 q p ( 𝐚 ; 𝐛 ; z ) is an entire function of each of the parameters a 1 , , a p , b 1 , , b q .
20: 30.6 Functions of Complex Argument
30.6.3 𝒲 { 𝑃𝑠 n m ( z , γ 2 ) , 𝑄𝑠 n m ( z , γ 2 ) } = ( 1 ) m ( n + m ) ! ( 1 z 2 ) ( n m ) ! A n m ( γ 2 ) A n m ( γ 2 ) ,