About the Project

as Bessel polynomials

AdvancedHelp

(0.005 seconds)

31—40 of 82 matching pages

31: 18.17 Integrals
18.17.17 0 1 ( 1 x 2 ) λ 1 2 C 2 n ( λ ) ( x ) cos ( x y ) d x = ( 1 ) n π Γ ( 2 n + 2 λ ) J λ + 2 n ( y ) ( 2 n ) ! Γ ( λ ) ( 2 y ) λ ,
18.17.18 0 1 ( 1 x 2 ) λ 1 2 C 2 n + 1 ( λ ) ( x ) sin ( x y ) d x = ( 1 ) n π Γ ( 2 n + 2 λ + 1 ) J 2 n + λ + 1 ( y ) ( 2 n + 1 ) ! Γ ( λ ) ( 2 y ) λ .
18.17.20 0 1 P n ( 1 2 x 2 ) cos ( x y ) d x = ( 1 ) n 1 2 π J n + 1 2 ( 1 2 y ) J n 1 2 ( 1 2 y ) ,
32: 18.10 Integral Representations
Laguerre
18.10.9 L n ( α ) ( x ) = e x x 1 2 α n ! 0 e t t n + 1 2 α J α ( 2 x t ) d t , α > 1 .
33: 18.18 Sums
Laguerre
18.18.27 n = 0 n ! L n ( α ) ( x ) L n ( α ) ( y ) ( α + 1 ) n z n = Γ ( α + 1 ) ( x y z ) 1 2 α 1 z exp ( ( x + y ) z 1 z ) I α ( 2 ( x y z ) 1 2 1 z ) , | z | < 1 .
34: 34.3 Basic Properties: 3 j Symbol
§34.3(vii) Relations to Legendre Polynomials and Spherical Harmonics
For the polynomials P l see §18.3, and for the function Y l , m see §14.30.
34.3.19 P l 1 ( cos θ ) P l 2 ( cos θ ) = l ( 2 l + 1 ) ( l 1 l 2 l 0 0 0 ) 2 P l ( cos θ ) ,
34.3.21 0 π P l 1 ( cos θ ) P l 2 ( cos θ ) P l 3 ( cos θ ) sin θ d θ = 2 ( l 1 l 2 l 3 0 0 0 ) 2 ,
35: 18.12 Generating Functions
18.12.2 𝐅 1 0 ( α + 1 ; ( x 1 ) z 2 ) 𝐅 1 0 ( β + 1 ; ( x + 1 ) z 2 ) = ( 1 2 ( 1 x ) z ) 1 2 α J α ( 2 ( 1 x ) z ) ( 1 2 ( 1 + x ) z ) 1 2 β I β ( 2 ( 1 + x ) z ) = n = 0 P n ( α , β ) ( x ) Γ ( n + α + 1 ) Γ ( n + β + 1 ) z n ,
18.12.6 Γ ( λ + 1 2 ) e z cos θ ( 1 2 z sin θ ) 1 2 λ J λ 1 2 ( z sin θ ) = n = 0 C n ( λ ) ( cos θ ) ( 2 λ ) n z n , 0 θ π .
18.12.12 e x z J 0 ( z 1 x 2 ) = n = 0 P n ( x ) n ! z n .
18.12.14 Γ ( α + 1 ) ( x z ) 1 2 α e z J α ( 2 x z ) = n = 0 L n ( α ) ( x ) ( α + 1 ) n z n .
36: 7.6 Series Expansions
7.6.9 erf ( a z ) = 2 z π e ( 1 2 a 2 ) z 2 n = 0 T 2 n + 1 ( a ) 𝗂 n ( 1 ) ( 1 2 z 2 ) , 1 a 1 .
37: 10.41 Asymptotic Expansions for Large Order
10.41.4 K ν ( ν z ) ( π 2 ν ) 1 2 e ν η ( 1 + z 2 ) 1 4 k = 0 ( 1 ) k U k ( p ) ν k ,
10.41.5 I ν ( ν z ) ( 1 + z 2 ) 1 4 e ν η ( 2 π ν ) 1 2 z k = 0 V k ( p ) ν k ,
10.41.6 K ν ( ν z ) ( π 2 ν ) 1 2 ( 1 + z 2 ) 1 4 e ν η z k = 0 ( 1 ) k V k ( p ) ν k ,
10.41.12 I ν ( ν z ) = e ν η ( 2 π ν ) 1 2 ( 1 + z 2 ) 1 4 ( k = 0 1 U k ( p ) ν k + O ( 1 z ) ) , | ph z | 1 2 π δ ,
38: 10.19 Asymptotic Expansions for Large Order
10.19.9 H ν ( 1 ) ( ν + a ν 1 3 ) H ν ( 2 ) ( ν + a ν 1 3 ) } 2 4 3 ν 1 3 e π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 P k ( a ) ν 2 k / 3 + 2 5 3 ν e ± π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 Q k ( a ) ν 2 k / 3 ,
10.19.13 H ν ( 1 ) ( ν + a ν 1 3 ) H ν ( 2 ) ( ν + a ν 1 3 ) } 2 5 3 ν 2 3 e ± π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 R k ( a ) ν 2 k / 3 + 2 4 3 ν 4 3 e π i / 3 Ai ( e π i / 3 2 1 3 a ) k = 0 S k ( a ) ν 2 k / 3 ,
39: 10.50 Wronskians and Cross-Products
10.50.4 𝗃 0 ( z ) 𝗃 n ( z ) + 𝗒 0 ( z ) 𝗒 n ( z ) = cos ( 1 2 n π ) k = 0 n / 2 ( 1 ) k a 2 k ( n + 1 2 ) z 2 k + 2 + sin ( 1 2 n π ) k = 0 ( n 1 ) / 2 ( 1 ) k a 2 k + 1 ( n + 1 2 ) z 2 k + 3 ,
40: 10.40 Asymptotic Expansions for Large Argument
10.40.5 I ν ( z ) e z ( 2 π z ) 1 2 k = 0 ( 1 ) k a k ( ν ) z k ± i e ± ν π i e z ( 2 π z ) 1 2 k = 0 a k ( ν ) z k , 1 2 π + δ ± ph z 3 2 π δ .