About the Project

argument%20%C2%B11

AdvancedHelp

(0.001 seconds)

21—30 of 231 matching pages

21: Bibliography F
β–Ί
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • β–Ί
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • β–Ί
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • β–Ί
  • C. L. Frenzen (1992) Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument. SIAM J. Math. Anal. 23 (2), pp. 505–511.
  • β–Ί
  • T. Fukushima (2010) Fast computation of incomplete elliptic integral of first kind by half argument transformation. Numer. Math. 116 (4), pp. 687–719.
  • 22: 35.2 Laplace Transform
    §35.2 Laplace Transform
    β–Ί
    Definition
    β–Ίwhere the integration variable 𝐗 ranges over the space 𝛀 . … β–Ί
    Inversion Formula
    β–Ί
    Convolution Theorem
    23: 25.6 Integer Arguments
    §25.6 Integer Arguments
    β–Ί
    §25.6(i) Function Values
    β–Ί
    25.6.3 ΢ ⁑ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    β–Ί
    §25.6(ii) Derivative Values
    24: Bibliography G
    β–Ί
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • β–Ί
  • A. Gervois and H. Navelet (1984) Some integrals involving three Bessel functions when their arguments satisfy the triangle inequalities. J. Math. Phys. 25 (11), pp. 3350–3356.
  • β–Ί
  • A. Gil and J. Segura (1997) Evaluation of Legendre functions of argument greater than one. Comput. Phys. Comm. 105 (2-3), pp. 273–283.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2004a) Algorithm 831: Modified Bessel functions of imaginary order and positive argument. ACM Trans. Math. Software 30 (2), pp. 159–164.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2004b) Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments. ACM Trans. Math. Software 30 (2), pp. 145–158.
  • 25: 5.22 Tables
    β–ΊAbramowitz and Stegun (1964, Chapter 6) tabulates Ξ“ ⁑ ( x ) , ln ⁑ Ξ“ ⁑ ( x ) , ψ ⁑ ( x ) , and ψ ⁑ ( x ) for x = 1 ⁒ ( .005 ) ⁒ 2 to 10D; ψ ′′ ⁑ ( x ) and ψ ( 3 ) ⁑ ( x ) for x = 1 ⁒ ( .01 ) ⁒ 2 to 10D; Ξ“ ⁑ ( n ) , 1 / Ξ“ ⁑ ( n ) , Ξ“ ⁑ ( n + 1 2 ) , ψ ⁑ ( n ) , log 10 ⁑ Ξ“ ⁑ ( n ) , log 10 ⁑ Ξ“ ⁑ ( n + 1 3 ) , log 10 ⁑ Ξ“ ⁑ ( n + 1 2 ) , and log 10 ⁑ Ξ“ ⁑ ( n + 2 3 ) for n = 1 ⁒ ( 1 ) ⁒ 101 to 8–11S; Ξ“ ⁑ ( n + 1 ) for n = 100 ⁒ ( 100 ) ⁒ 1000 to 20S. … β–ΊThis reference also includes ψ ⁑ ( x + i ⁒ y ) for the same arguments to 5D. …
    26: Bibliography B
    β–Ί
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1997) New tables of Bessel functions of complex argument. Comput. Math. Math. Phys. 37 (12), pp. 1480–1482.
  • β–Ί
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • β–Ί
  • R. Barakat (1961) Evaluation of the incomplete gamma function of imaginary argument by Chebyshev polynomials. Math. Comp. 15 (73), pp. 7–11.
  • β–Ί
  • A. R. Barnett (1982) COULFG: Coulomb and Bessel functions and their derivatives, for real arguments, by Steed’s method. Comput. Phys. Comm. 27, pp. 147–166.
  • β–Ί
  • W. Bühring (1992) Generalized hypergeometric functions at unit argument. Proc. Amer. Math. Soc. 114 (1), pp. 145–153.
  • 27: Bibliography K
    β–Ί
  • M. Kodama (2008) Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Software 34 (4), pp. Art. 22, 21.
  • β–Ί
  • M. Kodama (2011) Algorithm 912: a module for calculating cylindrical functions of complex order and complex argument. ACM Trans. Math. Software 37 (4), pp. Art. 47, 25.
  • β–Ί
  • P. Koev and A. Edelman (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comp. 75 (254), pp. 833–846.
  • β–Ί
  • K. S. Kölbig (1972c) Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. Comput. Phys. Comm. 4, pp. 221–226.
  • β–Ί
  • T. H. Koornwinder and I. Sprinkhuizen-Kuyper (1978) Hypergeometric functions of 2 × 2 matrix argument are expressible in terms of Appel’s functions F 4 . Proc. Amer. Math. Soc. 70 (1), pp. 39–42.
  • 28: 30.6 Functions of Complex Argument
    §30.6 Functions of Complex Argument
    β–ΊThe solutions … β–Ί
    30.6.3 𝒲 ⁑ { 𝑃𝑠 n m ⁑ ( z , Ξ³ 2 ) , 𝑄𝑠 n m ⁑ ( z , Ξ³ 2 ) } = ( 1 ) m ⁒ ( n + m ) ! ( 1 z 2 ) ⁒ ( n m ) ! ⁒ A n m ⁑ ( Ξ³ 2 ) ⁒ A n m ⁑ ( Ξ³ 2 ) ,
    β–Ί β–Ί
    29: Bibliography
    β–Ί
  • A. Abramov (1960) Tables of ln ⁑ Ξ“ ⁒ ( z ) for Complex Argument. Pergamon Press, New York.
  • β–Ί
  • G. Allasia and R. Besenghi (1991) Numerical evaluation of the Kummer function with complex argument by the trapezoidal rule. Rend. Sem. Mat. Univ. Politec. Torino 49 (3), pp. 315–327.
  • β–Ί
  • D. E. Amos (1985) A subroutine package for Bessel functions of a complex argument and nonnegative order. Technical Report Technical Report SAND85-1018, Sandia National Laboratories, Albuquerque, NM.
  • β–Ί
  • D. E. Amos (1986) Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Software 12 (3), pp. 265–273.
  • β–Ί
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • 30: 10.75 Tables
    β–ΊAlso, for additional listings of tables pertaining to complex arguments see Babushkina et al. (1997). … β–Ί
  • Achenbach (1986) tabulates J 0 ⁑ ( x ) , J 1 ⁑ ( x ) , Y 0 ⁑ ( x ) , Y 1 ⁑ ( x ) , x = 0 ⁒ ( .1 ) ⁒ 8 , 20D or 18–20S.

  • β–Ί
  • Bickley et al. (1952) tabulates x n ⁒ I n ⁑ ( x ) or e x ⁒ I n ⁑ ( x ) , x n ⁒ K n ⁑ ( x ) or e x ⁒ K n ⁑ ( x ) , n = 2 ⁒ ( 1 ) ⁒ 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ⁑ ( x ) , K n ⁑ ( x ) , n = 0 ⁒ ( 1 ) ⁒ 20 , x = 0 or 0.1 ⁒ ( .1 ) ⁒ 20 , 10S.

  • β–Ί
  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ⁑ ( z ) and K n ⁑ ( z ) , for n = 2 ⁒ ( 1 ) ⁒ 20 , 9S.

  • β–Ί
  • Zhang and Jin (1996, p. 322) tabulates ber ⁑ x , ber ⁑ x , bei ⁑ x , bei ⁑ x , ker ⁑ x , ker ⁑ x , kei ⁑ x , kei ⁑ x , x = 0 ⁒ ( 1 ) ⁒ 20 , 7S.