algebraic equations via Jacobian elliptic functions
(0.005 seconds)
1—10 of 995 matching pages
1: 22.15 Inverse Functions
§22.15 Inverse Functions
►§22.15(i) Definitions
… ►The principal values satisfy … ►§22.15(ii) Representations as Elliptic Integrals
… ►2: 29.2 Differential Equations
§29.2 Differential Equations
►§29.2(i) Lamé’s Equation
… ►§29.2(ii) Other Forms
… ►we have …For the Weierstrass function see §23.2(ii). …3: 31.2 Differential Equations
§31.2 Differential Equations
►§31.2(i) Heun’s Equation
►
31.2.1
.
…
►
Jacobi’s Elliptic Form
… ►§31.2(v) Heun’s Equation Automorphisms
…4: 30.2 Differential Equations
§30.2 Differential Equations
►§30.2(i) Spheroidal Differential Equation
… ► … ►The Liouville normal form of equation (30.2.1) is … ►If , Equation (30.2.4) is satisfied by spherical Bessel functions; see (10.47.1).5: 15.10 Hypergeometric Differential Equation
§15.10 Hypergeometric Differential Equation
… ►
15.10.1
…
►
Singularity
… ►Singularity
… ►Singularity
…6: 28.2 Definitions and Basic Properties
…
►
28.2.1
►With we obtain the algebraic form of Mathieu’s equation
…With we obtain another algebraic form:
…
►
§28.2(iv) Floquet Solutions
… ►§28.2(vi) Eigenfunctions
…7: 28.20 Definitions and Basic Properties
…
►
§28.20(i) Modified Mathieu’s Equation
►When is replaced by , (28.2.1) becomes the modified Mathieu’s equation: ►
28.20.1
►with its algebraic form
…
►