About the Project

Zelle login 1(205-892-1862) Zelle login error

AdvancedHelp

(0.005 seconds)

21—30 of 837 matching pages

21: 7.14 Integrals
§7.14(i) Error Functions
Fourier Transform
Laplace Transforms
For collections of integrals see Apelblat (1983, pp. 131–146), Erdélyi et al. (1954a, vol. 1, pp. 40, 96, 176–177), Geller and Ng (1971), Gradshteyn and Ryzhik (2000, §§5.4 and 6.28–6.32), Marichev (1983, pp. 184–189), Ng and Geller (1969), Oberhettinger (1974, pp. 138–139, 142–143), Oberhettinger (1990, pp. 48–52, 155–158), Oberhettinger and Badii (1973, pp. 171–172, 179–181), Prudnikov et al. (1986b, vol. 2, pp. 30–36, 93–143), Prudnikov et al. (1992a, §§3.7–3.8), and Prudnikov et al. (1992b, §§3.7–3.8). In a series of ten papers Hadži (1968, 1969, 1970, 1972, 1973, 1975a, 1975b, 1976a, 1976b, 1978) gives many integrals containing error functions and Fresnel integrals, also in combination with the hypergeometric function, confluent hypergeometric functions, and generalized hypergeometric functions.
22: 4.24 Inverse Trigonometric Functions: Further Properties
4.24.2 arccos z = ( 2 ( 1 z ) ) 1 / 2 ( 1 + n = 1 1 3 5 ( 2 n 1 ) 2 2 n ( 2 n + 1 ) n ! ( 1 z ) n ) , | 1 z | 2 .
4.24.4 arctan z = ± π 2 1 z + 1 3 z 3 1 5 z 5 + , z 0 , | z | 1 .
4.24.5 arctan z = z z 2 + 1 ( 1 + 2 3 z 2 1 + z 2 + 2 4 3 5 ( z 2 1 + z 2 ) 2 + ) , ( z 2 ) > 1 2 ,
4.24.10 d d z arccsc z = 1 z ( z 2 1 ) 1 / 2 , z 0 .
4.24.11 d d z arcsec z = ± 1 z ( z 2 1 ) 1 / 2 , z 0 .
23: 7.13 Zeros
§7.13(i) Zeros of erf z
erf z has a simple zero at z = 0 , and in the first quadrant of there is an infinite set of zeros z n = x n + i y n , n = 1 , 2 , 3 , , arranged in order of increasing absolute value. …
§7.13(ii) Zeros of erfc z
In the sector 1 2 π < ph z < 3 4 π , erfc z has an infinite set of zeros z n = x n + i y n , n = 1 , 2 , 3 , , arranged in order of increasing absolute value. … Thus if z n is a zero of erfc z 7.13(ii)), then ( 1 + i ) z n / π is a zero of ( z ) . …
24: 13.18 Relations to Other Functions
§13.18(ii) Incomplete Gamma Functions
When 1 2 κ ± μ is an integer the Whittaker functions can be expressed as incomplete gamma functions (or generalized exponential integrals). …Special cases are the error functions
13.18.7 W 1 4 , ± 1 4 ( z 2 ) = e 1 2 z 2 π z erfc ( z ) .
25: 7.8 Inequalities
§7.8 Inequalities
7.8.2 1 x + x 2 + 2 < 𝖬 ( x ) 1 x + x 2 + ( 4 / π ) , x 0 ,
7.8.3 π 2 π x + 2 𝖬 ( x ) < 1 x + 1 , x 0 ,
The function F ( x ) / 1 e 2 x 2 is strictly decreasing for x > 0 . …
7.8.8 erf x < 1 e 4 x 2 / π , x > 0 .
26: 3.2 Linear Algebra
In solving 𝐀 𝐱 = [ 1 , 1 , 1 ] T , we obtain by forward elimination 𝐲 = [ 1 , 1 , 3 ] T , and by back substitution 𝐱 = [ 1 6 , 1 6 , 1 6 ] T . … where u j = c j , j = 1 , 2 , , n 1 , d 1 = b 1 , and … Then we have the a posteriori error bound … Start with 𝐯 0 = 𝟎 , vector 𝐯 1 such that 𝐯 1 T 𝐒 𝐯 1 = 1 , α 1 = 𝐯 1 T 𝐀 𝐯 1 , β 1 = 0 . Then for j = 1 , 2 , , n 1
27: 8.4 Special Values
For erf ( z ) , erfc ( z ) , and F ( z ) , see §§7.2(i), 7.2(ii). …
8.4.1 γ ( 1 2 , z 2 ) = 2 0 z e t 2 d t = π erf ( z ) ,
8.4.6 Γ ( 1 2 , z 2 ) = 2 z e t 2 d t = π erfc ( z ) .
For n = 0 , 1 , 2 , , …
28: 5.19 Mathematical Applications
a k = k ( 3 k + 2 ) ( 2 k + 1 ) ( k + 1 ) .
5.19.2 a k = 2 k + 2 3 1 k + 1 2 1 k + 1 = ( 1 k + 1 1 k + 1 2 ) 2 ( 1 k + 1 1 k + 2 3 ) .
By translating the contour parallel to itself and summing the residues of the integrand, asymptotic expansions of f ( z ) for large | z | , or small | z | , can be obtained complete with an integral representation of the error term. …
V = π 1 2 n r n Γ ( 1 2 n + 1 ) ,
S = 2 π 1 2 n r n 1 Γ ( 1 2 n ) = n r V .
29: 7.7 Integral Representations
§7.7(i) Error Functions and Dawson’s Integral
Integrals of the type e z 2 R ( z ) d z , where R ( z ) is an arbitrary rational function, can be written in closed form in terms of the error functions and elementary functions. …
7.7.9 0 x erf t d t = x erf x + 1 π ( e x 2 1 ) .
In (7.7.13) and (7.7.14) the integration paths are straight lines, ζ = 1 16 π 2 z 4 , and c is a constant such that 0 < c < 1 4 in (7.7.13), and 0 < c < 3 4 in (7.7.14). … For other integral representations see Erdélyi et al. (1954a, vol. 1, pp. 265–267, 270), Ng and Geller (1969), Oberhettinger (1974, pp. 246–248), and Oberhettinger and Badii (1973, pp. 371–377).
30: 32.10 Special Function Solutions
with C 1 , C 2 arbitrary constants. … More generally, if n = 1 , 2 , 3 , , then … If n = 1 , then the Riccati equation is …with C 1 , C 2 arbitrary constants. … with C 1 , C 2 arbitrary constants. …