About the Project

Watson identities

AdvancedHelp

(0.009 seconds)

11—15 of 15 matching pages

11: 2.5 Mellin Transform Methods
When x = 1 , this identity is a Parseval-type formula; compare §1.14(iv). … Then from Table 1.14.5 and Watson (1944, p. 403)
12: 16.4 Argument Unity
See Erdélyi et al. (1953a, §4.4(4)) for a non-terminating balanced identity. …
Watson’s Sum
§16.4(iii) Identities
Methods of deriving such identities are given by Bailey (1964), Rainville (1960), Raynal (1979), and Wilson (1978). …
13: 2.11 Remainder Terms; Stokes Phenomenon
Application of Watson’s lemma (§2.4(i)) yields … From (2.11.5) and the identity
14: Bibliography S
  • L. Shen (1998) On an identity of Ramanujan based on the hypergeometric series F 1 2 ( 1 3 , 2 3 ; 1 2 ; x ) . J. Number Theory 69 (2), pp. 125–134.
  • A. Sidi (1985) Asymptotic expansions of Mellin transforms and analogues of Watson’s lemma. SIAM J. Math. Anal. 16 (4), pp. 896–906.
  • R. Sitaramachandrarao and B. Davis (1986) Some identities involving the Riemann zeta function. II. Indian J. Pure Appl. Math. 17 (10), pp. 1175–1186.
  • 15: Errata
  • Subsection 17.7(iii)

    The title of the paragraph which was previously “Andrews’ Terminating q -Analog of (17.7.8)” has been changed to “Andrews’ q -Analog of the Terminating Version of Watson’s F 2 3 Sum (16.4.6)”. The title of the paragraph which was previously “Andrews’ Terminating q -Analog” has been changed to “Andrews’ q -Analog of the Terminating Version of Whipple’s F 2 3 Sum (16.4.7)”.

  • Equation (25.15.6)
    25.15.6 G ( χ ) r = 1 k 1 χ ( r ) e 2 π i r / k .

    The upper-index of the finite sum which originally was k , was replaced with k 1 since χ ( k ) = 0 .

    Reported by Gergő Nemes on 2021-08-23

  • Notation

    The overloaded operator is now more clearly separated (and linked) to two distinct cases: equivalence by definition (in §§1.4(ii), 1.4(v), 2.7(i), 2.10(iv), 3.1(i), 3.1(iv), 4.18, 9.18(ii), 9.18(vi), 9.18(vi), 18.2(iv), 20.2(iii), 20.7(vi), 23.20(ii), 25.10(i), 26.15, 31.17(i)); and modular equivalence (in §§24.10(i), 24.10(ii), 24.10(iii), 24.10(iv), 24.15(iii), 24.19(ii), 26.14(i), 26.21, 27.2(i), 27.8, 27.9, 27.11, 27.12, 27.14(v), 27.14(vi), 27.15, 27.16, 27.19).

  • Subsection 5.2(iii)

    Three new identities for Pochhammer’s symbol (5.2.6)–(5.2.8) have been added at the end of this subsection.

    Suggested by Tom Koornwinder.

  • Equation (26.7.6)
    26.7.6 B ( n + 1 ) = k = 0 n ( n k ) B ( k )

    Originally this equation appeared with B ( n ) in the summation, instead of B ( k ) .

    Reported 2010-11-07 by Layne Watson.