About the Project

Van Vleck theorem for continued fractions

AdvancedHelp

(0.002 seconds)

21—30 of 266 matching pages

21: 6.18 Methods of Computation
Lastly, the continued fraction (6.9.1) can be used if | z | is bounded away from the origin. … For a comprehensive survey of computational methods for the functions treated in this chapter, see van der Laan and Temme (1984, Ch. IV).
22: 6.17 Physical Applications
For applications in astrophysics, see also van de Hulst (1980). …
23: Bibliography L
  • J. Lagrange (1770) Démonstration d’un Théoréme d’Arithmétique. Nouveau Mém. Acad. Roy. Sci. Berlin, pp. 123–133 (French).
  • W. J. Lentz (1976) Generating Bessel functions in Mie scattering calculations using continued fractions. Applied Optics 15 (3), pp. 668–671.
  • E. Levin and D. S. Lubinsky (2001) Orthogonal Polynomials for Exponential Weights. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 4, Springer-Verlag, New York.
  • L. Lewin (1981) Polylogarithms and Associated Functions. North-Holland Publishing Co., New York.
  • L. Lorentzen and H. Waadeland (1992) Continued Fractions with Applications. Studies in Computational Mathematics, North-Holland Publishing Co., Amsterdam.
  • 24: 10.55 Continued Fractions
    §10.55 Continued Fractions
    For continued fractions for 𝗃 n + 1 ( z ) / 𝗃 n ( z ) and 𝗂 n + 1 ( 1 ) ( z ) / 𝗂 n ( 1 ) ( z ) see Cuyt et al. (2008, pp. 350, 353, 362, 363, 367–369).
    25: Bibliography K
  • E. L. Kaplan (1948) Auxiliary table for the incomplete elliptic integrals. J. Math. Physics 27, pp. 11–36.
  • T. Kasuga and R. Sakai (2003) Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121 (1), pp. 13–53.
  • B. J. King and A. L. Van Buren (1973) A general addition theorem for spheroidal wave functions. SIAM J. Math. Anal. 4 (1), pp. 149–160.
  • B. J. King and A. L. Van Buren (1970) A Fortran computer program for calculating the prolate and oblate angle functions of the first kind and their first and second derivatives. NRL Report No. 7161 Naval Res. Lab.  Washingtion, D.C..
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • 26: 25.6 Integer Arguments
    25.6.4 ζ ( 2 n ) = 0 , n = 1 , 2 , 3 , .
    25.6.8 ζ ( 2 ) = 3 k = 1 1 k 2 ( 2 k k ) .
    25.6.9 ζ ( 3 ) = 5 2 k = 1 ( 1 ) k 1 k 3 ( 2 k k ) .
    25.6.10 ζ ( 4 ) = 36 17 k = 1 1 k 4 ( 2 k k ) .
    27: Bibliography S
  • H. E. Salzer (1955) Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms. Math. Tables Aids Comput. 9 (52), pp. 164–177.
  • F. W. Schäfke and D. Schmidt (1966) Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung III. Numer. Math. 8 (1), pp. 68–71.
  • F. W. Schäfke (1961a) Ein Verfahren zur Berechnung des charakteristischen Exponenten der Mathieuschen Differentialgleichung I. Numer. Math. 3 (1), pp. 30–38.
  • T. Shiota (1986) Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83 (2), pp. 333–382.
  • L. J. Slater (1966) Generalized Hypergeometric Functions. Cambridge University Press, Cambridge.
  • 28: 30.18 Software
    See also King et al. (1970), King and Van Buren (1970), Van Buren et al. (1970), and Van Buren et al. (1972).
    29: Bibliography T
  • I. J. Thompson and A. R. Barnett (1985) COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments. Comput. Phys. Comm. 36 (4), pp. 363–372.
  • I. J. Thompson (2004) Erratum to “COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments”. Comput. Phys. Comm. 159 (3), pp. 241–242.
  • F. G. Tricomi (1950b) Asymptotische Eigenschaften der unvollständigen Gammafunktion. Math. Z. 53, pp. 136–148 (German).
  • F. G. Tricomi (1947) Sugli zeri delle funzioni di cui si conosce una rappresentazione asintotica. Ann. Mat. Pura Appl. (4) 26, pp. 283–300 (Italian).
  • 30: Tom H. Koornwinder
    … …