About the Project

SL(2,Z) bilinear transformation

AdvancedHelp

(0.004 seconds)

31—40 of 814 matching pages

31: 16.6 Transformations of Variable
§16.6 Transformations of Variable
Quadratic
Cubic
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
32: 17.18 Methods of Computation
§17.18 Methods of Computation
The two main methods for computing basic hypergeometric functions are: (1) numerical summation of the defining series given in §§17.4(i) and 17.4(ii); (2) modular transformations. …Method (2) is very powerful when applicable (Andrews (1976, Chapter 5)); however, it is applicable only rarely. Lehner (1941) uses Method (2) in connection with the Rogers–Ramanujan identities. …
33: 14.31 Other Applications
§14.31(ii) Conical Functions
The conical functions 𝖯 1 2 + i τ m ( x ) appear in boundary-value problems for the Laplace equation in toroidal coordinates (§14.19(i)) for regions bounded by cones, by two intersecting spheres, or by one or two confocal hyperboloids of revolution (Kölbig (1981)). These functions are also used in the Mehler–Fock integral transform14.20(vi)) for problems in potential and heat theory, and in elementary particle physics (Sneddon (1972, Chapter 7) and Braaksma and Meulenbeld (1967)). The conical functions and Mehler–Fock transform generalize to Jacobi functions and the Jacobi transform; see Koornwinder (1984a) and references therein. …
34: 10.25 Definitions
10.25.1 z 2 d 2 w d z 2 + z d w d z ( z 2 + ν 2 ) w = 0 .
In particular, the principal branch of I ν ( z ) is defined in a similar way: it corresponds to the principal value of ( 1 2 z ) ν , is analytic in ( , 0 ] , and two-valued and discontinuous on the cut ph z = ± π . … as z in | ph z | 3 2 π δ ( < 3 2 π ) . …
Symbol 𝒵 ν ( z )
Corresponding to the symbol 𝒞 ν introduced in §10.2(ii), we sometimes use 𝒵 ν ( z ) to denote I ν ( z ) , e ν π i K ν ( z ) , or any nontrivial linear combination of these functions, the coefficients in which are independent of z and ν . …
35: 22.21 Tables
Curtis (1964b) tabulates sn ( m K / n , k ) , cn ( m K / n , k ) , dn ( m K / n , k ) for n = 2 ( 1 ) 15 , m = 1 ( 1 ) n 1 , and q (not k ) = 0 ( .005 ) 0.35 to 20D. Lawden (1989, pp. 280–284 and 293–297) tabulates sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , ( x , k ) , Z ( x | k ) to 5D for k = 0.1 ( .1 ) 0.9 , x = 0 ( .1 ) X , where X ranges from 1. 5 to 2. 2. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. …
36: 32.7 Bäcklund Transformations
Then the transformations P II  also has the special transformationThe transformations 𝒮 j , for j = 1 , 2 , 3 , generate a group of order 24. … The quartic transformation
37: 3.9 Acceleration of Convergence
§3.9(i) Sequence Transformations
§3.9(iv) Shanks’ Transformation
Shanks’ transformation is a generalization of Aitken’s Δ 2 -process. …Then the transformation of the sequence { s n } into a sequence { t n , 2 k } is given by … In Table 3.9.1 values of the transforms t n , 2 k are supplied for …
38: 35.1 Special Notation
a , b complex variables.
𝐙 complex symmetric matrix.
Z κ ( 𝐓 ) zonal polynomials.
The main functions treated in this chapter are the multivariate gamma and beta functions, respectively Γ m ( a ) and B m ( a , b ) , and the special functions of matrix argument: Bessel (of the first kind) A ν ( 𝐓 ) and (of the second kind) B ν ( 𝐓 ) ; confluent hypergeometric (of the first kind) F 1 1 ( a ; b ; 𝐓 ) or F 1 1 ( a b ; 𝐓 ) and (of the second kind) Ψ ( a ; b ; 𝐓 ) ; Gaussian hypergeometric F 1 2 ( a 1 , a 2 ; b ; 𝐓 ) or F 1 2 ( a 1 , a 2 b ; 𝐓 ) ; generalized hypergeometric F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) or F q p ( a 1 , , a p b 1 , , b q ; 𝐓 ) . An alternative notation for the multivariate gamma function is Π m ( a ) = Γ m ( a + 1 2 ( m + 1 ) ) (Herz (1955, p. 480)). Related notations for the Bessel functions are 𝒥 ν + 1 2 ( m + 1 ) ( 𝐓 ) = A ν ( 𝐓 ) / A ν ( 𝟎 ) (Faraut and Korányi (1994, pp. 320–329)), K m ( 0 , , 0 , ν | 𝐒 , 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Terras (1988, pp. 49–64)), and 𝒦 ν ( 𝐓 ) = | 𝐓 | ν B ν ( 𝐒 𝐓 ) (Faraut and Korányi (1994, pp. 357–358)).
39: 10.66 Expansions in Series of Bessel Functions
10.66.1 ber ν x + i bei ν x = k = 0 e ( 3 ν + k ) π i / 4 x k J ν + k ( x ) 2 k / 2 k ! = k = 0 e ( 3 ν + 3 k ) π i / 4 x k I ν + k ( x ) 2 k / 2 k ! .
ber n ( x 2 ) = k = ( 1 ) n + k J n + 2 k ( x ) I 2 k ( x ) ,
bei n ( x 2 ) = k = ( 1 ) n + k J n + 2 k + 1 ( x ) I 2 k + 1 ( x ) .
40: 22.1 Special Notation
x , y real variables.
k complementary modulus, k 2 + k 2 = 1 . If k [ 0 , 1 ] , then k [ 0 , 1 ] .
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . … Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …