About the Project

Rutherford%20scattering

AdvancedHelp

(0.002 seconds)

11—20 of 121 matching pages

11: Bibliography
  • M. J. Ablowitz and P. A. Clarkson (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge.
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • M. J. Ablowitz and H. Segur (1981) Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia (1997) High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder. J. Opt. Soc. Amer. A 14 (6), pp. 1305–1315.
  • H. H. Aly, H. J. W. Müller-Kirsten, and N. Vahedi-Faridi (1975) Scattering by singular potentials with a perturbation – Theoretical introduction to Mathieu functions. J. Mathematical Phys. 16, pp. 961–970.
  • 12: Bibliography F
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • K. W. Ford and J. A. Wheeler (1959a) Semiclassical description of scattering. Ann. Physics 7 (3), pp. 259–286.
  • K. W. Ford and J. A. Wheeler (1959b) Application of semiclassical scattering analysis. Ann. Physics 7 (3), pp. 287–322.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 13: 14.31 Other Applications
    §14.31(iii) Miscellaneous
    Many additional physical applications of Legendre polynomials and associated Legendre functions include solution of the Helmholtz equation, as well as the Laplace equation, in spherical coordinates (Temme (1996b)), quantum mechanics (Edmonds (1974)), and high-frequency scattering by a sphere (Nussenzveig (1965)). … Legendre functions P ν ( x ) of complex degree ν appear in the application of complex angular momentum techniques to atomic and molecular scattering (Connor and Mackay (1979)). …
    14: T. Mark Dunster
    He has received a number of National Science Foundation grants, and has published numerous papers in the areas of uniform asymptotic solutions of differential equations, convergent WKB methods, special functions, quantum mechanics, and scattering theory. …
    15: Vadim B. Kuznetsov
    Kuznetsov published papers on special functions and orthogonal polynomials, the quantum scattering method, integrable discrete many-body systems, separation of variables, Bäcklund transformation techniques, and integrability in classical and quantum mechanics. …
    16: Ian J. Thompson
    Thompson has published papers on special functions, and numerous papers in theoretical nuclear physics, especially in scattering theory. …
    17: Bibliography B
  • L. P. Bayvel and A. R. Jones (1981) Electromagnetic Scattering and its Applications. Applied Science Publishers, London.
  • P. Beckmann and A. Spizzichino (1963) The Scattering of Electromagnetic Waves from Rough Surfaces. Pergamon Press, New York.
  • M. V. Berry (1966) Uniform approximation for potential scattering involving a rainbow. Proc. Phys. Soc. 89 (3), pp. 479–490.
  • M. V. Berry (1975) Cusped rainbows and incoherence effects in the rippling-mirror model for particle scattering from surfaces. J. Phys. A 8 (4), pp. 566–584.
  • W. G. C. Boyd (1973) The asymptotic analysis of canonical problems in high-frequency scattering theory. II. The circular and parabolic cylinders. Proc. Cambridge Philos. Soc. 74, pp. 313–332.
  • 18: Bibliography R
  • H. A. Ragheb, L. Shafai, and M. Hamid (1991) Plane wave scattering by a conducting elliptic cylinder coated by a nonconfocal dielectric. IEEE Trans. Antennas and Propagation 39 (2), pp. 218–223.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • M. Reed and B. Simon (1979) Methods of Modern Mathematical Physics, Vol. 3, Scattering Theory. Academic Press, New York.
  • 19: 18.39 Applications in the Physical Sciences
    While non-normalizable continuum, or scattering, states are mentioned, with appropriate references in what follows, focus is on the L 2 eigenfunctions corresponding to the point, or discrete, spectrum, and representing bound rather than scattering states, these former being expressed in terms of OP’s or EOP’s. …
    The Quantum Coulomb Problem: Scattering States
    As the scattering eigenfunctions of Chapter 33, are not OP’s, their further discussion is deferred to §18.39(iv), where discretized representations of these scattering states are introduced, Laguerre and Pollaczek OP’s then playing a key role. … The fact that non- L 2 continuum scattering eigenstates may be expressed in terms or (infinite) sums of L 2 functions allows a reformulation of scattering theory in atomic physics wherein no non- L 2 functions need appear. As this follows from the three term recursion of (18.39.46) it is referred to as the J-Matrix approach, see (3.5.31), to single and multi-channel scattering numerics. …
    20: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • M. Kerker (1969) The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin (1993) Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge.