About the Project

Rogers%E2%80%93Szeg%C5%91%20polynomials

AdvancedHelp

(0.003 seconds)

21—30 of 336 matching pages

21: 18.28 Askey–Wilson Class
Duality
§18.28(v) Continuous q -Ultraspherical Polynomials
These polynomials are also called Rogers polynomials.
§18.28(vi) Continuous q -Hermite Polynomials
§18.28(viii) q -Racah Polynomials
22: 17.6 ϕ 1 2 Function
Rogers–Fine Identity
23: Bibliography D
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • 24: 8.23 Statistical Applications
    In queueing theory the Erlang loss function is used, which can be expressed in terms of the reciprocal of Q ( a , x ) ; see Jagerman (1974) and Cooper (1981, pp. 80, 316–319). …
    25: 32.8 Rational Solutions
    where the Q n ( z ) are monic polynomials (coefficient of highest power of z is 1 ) satisfying … Next, let p m ( z ) be the polynomials defined by p m ( z ) = 0 for m < 0 , and … where P m ( z ) and Q m ( z ) are polynomials of degree m , with no common zeros. … where P j , n 1 ( z ) and Q j , n ( z ) are polynomials of degrees n 1 and n , respectively, with no common zeros. … where λ , μ are constants, and P n 1 ( z ) , Q n ( z ) are polynomials of degrees n 1 and n , respectively, with no common zeros. …
    26: Bibliography K
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • 27: 26.13 Permutations: Cycle Notation
    28: 26.6 Other Lattice Path Numbers
    Table 26.6.1: Delannoy numbers D ( m , n ) .
    m n
    10 1 21 221 1561 8361 36365 1 34245 4 33905 12 56465 33 17445 80 97453
    Table 26.6.3: Narayana numbers N ( n , k ) .
    n k
    5 0 1 10 20 10 1
    29: Bibliography J
  • L. Jager (1997) Fonctions de Mathieu et polynômes de Klein-Gordon. C. R. Acad. Sci. Paris Sér. I Math. 325 (7), pp. 713–716 (French).
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • B. R. Judd (1976) Modifications of Coulombic interactions by polarizable atoms. Math. Proc. Cambridge Philos. Soc. 80 (3), pp. 535–539.
  • 30: 22.7 Landen Transformations