About the Project

Rogers%E2%80%93Szeg%C5%91%20polynomials

AdvancedHelp

(0.003 seconds)

11—20 of 336 matching pages

11: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
12: 17.2 Calculus
17.2.27 [ n m ] q = ( q ; q ) n ( q ; q ) m ( q ; q ) n m = ( q n ; q ) m ( 1 ) m q n m ( m 2 ) ( q ; q ) m ,
17.2.30 [ n m ] q = [ m + n 1 m ] q ( 1 ) m q m n ( m 2 ) ,
§17.2(vi) Rogers–Ramanujan Identities
13: Bibliography L
  • D. F. Lawden (1989) Elliptic Functions and Applications. Applied Mathematical Sciences, Vol. 80, Springer-Verlag, New York.
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • 14: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • R. J. Baxter (1981) Rogers-Ramanujan identities in the hard hexagon model. J. Statist. Phys. 26 (3), pp. 427–452.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • A. Berkovich and B. M. McCoy (1998) Rogers-Ramanujan Identities: A Century of Progress from Mathematics to Physics. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 163–172.
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.
  • 15: 18.3 Definitions
    §18.3 Definitions
    For expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). …
    Bessel polynomials
    Bessel polynomials are often included among the classical OP’s. …
    16: 16.4 Argument Unity
    Rogers–Dougall Very Well-Poised Sum
    The characterizing properties (18.22.2), (18.22.10), (18.22.19), (18.22.20), and (18.26.14) of the Hahn and Wilson class polynomials are examples of the contiguous relations mentioned in the previous three paragraphs. … One example of such a three-term relation is the recurrence relation (18.26.16) for Racah polynomials. … …
    17: 17.14 Constant Term Identities
    Rogers–Ramanujan Constant Term Identities
    18: 10.23 Sums
    where C k ( ν ) ( cos α ) is Gegenbauer’s polynomial18.3). … For expansions of products of Bessel functions of the first kind in partial fractions see Rogers (2005). … and O k ( t ) is Neumann’s polynomial, defined by the generating function:
    10.23.12 1 t z = J 0 ( z ) O 0 ( t ) + 2 k = 1 J k ( z ) O k ( t ) , | z | < | t | .
    O n ( t ) is a polynomial of degree n + 1 in 1 / t : O 0 ( t ) = 1 / t and …
    19: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • P. I. Hadži (1978) Sums with cylindrical functions that reduce to the probability function and to related functions. Bul. Akad. Shtiintse RSS Moldoven. 1978 (3), pp. 80–84, 95 (Russian).
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • 20: 27.2 Functions
    Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …
    Table 27.2.1: Primes.
    n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
    10 4 4 18 23 22 2 24 36 12 9 91 49 42 3 57
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93