About the Project

Riemann zeta function

AdvancedHelp

(0.010 seconds)

11—20 of 59 matching pages

11: 25.10 Zeros
§25.10(i) Distribution
The functional equation (25.4.1) implies ζ ( 2 n ) = 0 for n = 1 , 2 , 3 , . … …
25.10.1 Z ( t ) exp ( i ϑ ( t ) ) ζ ( 1 2 + i t ) ,
§25.10(ii) Riemann–Siegel Formula
12: 25.6 Integer Arguments
§25.6(i) Function Values
25.6.4 ζ ( 2 n ) = 0 , n = 1 , 2 , 3 , .
§25.6(ii) Derivative Values
25.6.13 ( 1 ) k ζ ( k ) ( 2 n ) = 2 ( 1 ) n ( 2 π ) 2 n + 1 m = 0 k r = 0 m ( k m ) ( m r ) ( c k m ) Γ ( r ) ( 2 n + 1 ) ζ ( m r ) ( 2 n + 1 ) ,
§25.6(iii) Recursion Formulas
13: 25.5 Integral Representations
§25.5 Integral Representations
25.5.8 ζ ( s ) = 1 2 ( 1 2 s ) Γ ( s ) 0 x s 1 sinh x d x , s > 1 .
25.5.9 ζ ( s ) = 2 s 1 Γ ( s + 1 ) 0 x s ( sinh x ) 2 d x , s > 1 .
25.5.19 ζ ( m + s ) = ( 1 ) m 1 Γ ( s ) sin ( π s ) π Γ ( m + s ) 0 ψ ( m ) ( 1 + x ) x s d x , m = 1 , 2 , 3 , .
§25.5(iii) Contour Integrals
14: 25.2 Definition and Expansions
§25.2 Definition and Expansions
When s > 1 , …
§25.2(ii) Other Infinite Series
§25.2(iii) Representations by the Euler–Maclaurin Formula
§25.2(iv) Infinite Products
15: 25.19 Tables
  • Cloutman (1989) tabulates Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ( .05 ) 25 , to 12S.

  • Fletcher et al. (1962, §22.1) lists many sources for earlier tables of ζ ( s ) for both real and complex s . §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of ζ ( s , a ) , and §22.17 lists tables for some Dirichlet L -functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.

  • 16: 25.16 Mathematical Applications
    §25.16 Mathematical Applications
    which is related to the Riemann zeta function by
    25.16.2 ψ ( x ) = x ζ ( 0 ) ζ ( 0 ) ρ x ρ ρ + o ( 1 ) , x ,
    §25.16(ii) Euler Sums
    which satisfies the reciprocity law …
    17: 20.10 Integrals
    20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
    20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
    Here ζ ( s ) again denotes the Riemann zeta function25.2). …
    18: 25.9 Asymptotic Approximations
    §25.9 Asymptotic Approximations
    25.9.1 ζ ( σ + i t ) = 1 n x 1 n s + χ ( s ) 1 n y 1 n 1 s + O ( x σ ) + O ( y σ 1 t 1 2 σ ) ,
    25.9.3 ζ ( 1 2 + i t ) = n = 1 m 1 n 1 2 + i t + χ ( 1 2 + i t ) n = 1 m 1 n 1 2 i t + O ( t 1 / 4 ) .
    19: 5.16 Sums
    5.16.2 k = 1 1 k ψ ( k + 1 ) = ζ ( 3 ) = 1 2 ψ ′′ ( 1 ) .
    20: 25.11 Hurwitz Zeta Function
    The Riemann zeta function is a special case:
    25.11.2 ζ ( s , 1 ) = ζ ( s ) .
    25.11.11 ζ ( s , 1 2 ) = ( 2 s 1 ) ζ ( s ) , s 1 .
    25.11.24 r = 1 k 1 ζ ( s , r k ) = ( k s 1 ) ζ ( s ) + k s ζ ( s ) ln k , s 1 , k = 1 , 2 , 3 , .
    25.11.41 ζ ( s , a + 1 ) = ζ ( s ) s ζ ( s + 1 ) a + O ( a 2 ) .