About the Project

Riemann matrix

AdvancedHelp

(0.002 seconds)

11—20 of 25 matching pages

11: Bibliography B
  • P. Bleher and A. Its (1999) Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150 (1), pp. 185–266.
  • 12: 18.38 Mathematical Applications
    Random Matrix Theory
    Hermite polynomials (and their Freud-weight analogs (§18.32)) play an important role in random matrix theory. …
    Riemann–Hilbert Problems
    13: Bibliography R
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • D. St. P. Richards (2004) Total positivity properties of generalized hypergeometric functions of matrix argument. J. Statist. Phys. 116 (1-4), pp. 907–922.
  • B. Riemann (1859) Über die Anzahl der Primzahlen unter einer gegebenen Grösse. Monats. Berlin Akad. November 1859, pp. 671–680.
  • B. Riemann (1899) Elliptische Functionen. Teubner, Leipzig.
  • B. Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen.
  • 14: Bibliography C
  • B. K. Choudhury (1995) The Riemann zeta-function and its derivatives. Proc. Roy. Soc. London Ser. A 450, pp. 477–499.
  • W. J. Cody, K. E. Hillstrom, and H. C. Thacher (1971) Chebyshev approximations for the Riemann zeta function. Math. Comp. 25 (115), pp. 537–547.
  • A. Cruz, J. Esparza, and J. Sesma (1991) Zeros of the Hankel function of real order out of the principal Riemann sheet. J. Comput. Appl. Math. 37 (1-3), pp. 89–99.
  • A. Csótó and G. M. Hale (1997) S -matrix and R -matrix determination of the low-energy He 5 and Li 5 resonance parameters. Phys. Rev. C 55 (1), pp. 536–539.
  • 15: 15.17 Mathematical Applications
    First, as spherical functions on noncompact Riemannian symmetric spaces of rank one, but also as associated spherical functions, intertwining functions, matrix elements of SL ( 2 , ) , and spherical functions on certain nonsymmetric Gelfand pairs. … The three singular points in Riemann’s differential equation (15.11.1) lead to an interesting Riemann sheet structure. By considering, as a group, all analytic transformations of a basis of solutions under analytic continuation around all paths on the Riemann sheet, we obtain the monodromy group. These monodromy groups are finite iff the solutions of Riemann’s differential equation are all algebraic. …
    16: Bibliography D
  • G. M. D’Ariano, C. Macchiavello, and M. G. A. Paris (1994) Detection of the density matrix through optical homodyne tomography without filtered back projection. Phys. Rev. A 50 (5), pp. 4298–4302.
  • N. G. de Bruijn (1937) Integralen voor de ζ -functie van Riemann. Mathematica (Zutphen) B5, pp. 170–180 (Dutch).
  • B. Deconinck and M. van Hoeij (2001) Computing Riemann matrices of algebraic curves. Phys. D 152/153, pp. 28–46.
  • T. M. Dunster (2006) Uniform asymptotic approximations for incomplete Riemann zeta functions. J. Comput. Appl. Math. 190 (1-2), pp. 339–353.
  • A. J. Durán and F. A. Grünbaum (2005) A survey on orthogonal matrix polynomials satisfying second order differential equations. J. Comput. Appl. Math. 178 (1-2), pp. 169–190.
  • 17: Software Index
    18: Bibliography Y
  • H. A. Yamani and L. Fishman (1975) J -matrix method: Extensions to arbitrary angular momentum and to Coulomb scattering. J. Math. Phys. 16, pp. 410–420.
  • A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1985) The calculation of the Riemann zeta function in the complex domain. USSR Comput. Math. and Math. Phys. 25 (2), pp. 111–119.
  • A. Yu. Yeremin, I. E. Kaporin, and M. K. Kerimov (1988) Computation of the derivatives of the Riemann zeta-function in the complex domain. USSR Comput. Math. and Math. Phys. 28 (4), pp. 115–124.
  • 19: Bibliography H
  • M. H. Halley, D. Delande, and K. T. Taylor (1993) The combination of R -matrix and complex coordinate methods: Application to the diamagnetic Rydberg spectra of Ba and Sr. J. Phys. B 26 (12), pp. 1775–1790.
  • C. B. Haselgrove and J. C. P. Miller (1960) Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York.
  • E. J. Heller, W. P. Reinhardt, and H. A. Yamani (1973) On an “equivalent quadrature” calculation of matrix elements of ( z p 2 / 2 m ) 1 using an L 2 expansion technique. J. Comput. Phys. 13, pp. 536–550.
  • C. S. Herz (1955) Bessel functions of matrix argument. Ann. of Math. (2) 61 (3), pp. 474–523.
  • T. H. Hildebrandt (1938) Definitions of Stieltjes Integrals of the Riemann Type. Amer. Math. Monthly 45 (5), pp. 265–278.
  • 20: Bibliography
  • A. D. Alhaidari, E. J. Heller, H. A. Yamani, and M. S. Abdelmonem (Eds.) (2008) The J -Matrix Method. Developments and Applications. Springer-Verlag.
  • G. Allasia and R. Besenghi (1989) Numerical Calculation of the Riemann Zeta Function and Generalizations by Means of the Trapezoidal Rule. In Numerical and Applied Mathematics, Part II (Paris, 1988), C. Brezinski (Ed.), IMACS Ann. Comput. Appl. Math., Vol. 1, pp. 467–472.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • J. V. Armitage (1989) The Riemann Hypothesis and the Hamiltonian of a Quantum Mechanical System. In Number Theory and Dynamical Systems (York, 1987), M. M. Dodson and J. A. G. Vickers (Eds.), London Math. Soc. Lecture Note Ser., Vol. 134, pp. 153–172.