About the Project

Riemann%20hypothesis

AdvancedHelp

(0.001 seconds)

21—30 of 165 matching pages

21: 25.4 Reflection Formulas
§25.4 Reflection Formulas
25.4.1 ζ ( 1 s ) = 2 ( 2 π ) s cos ( 1 2 π s ) Γ ( s ) ζ ( s ) ,
25.4.3 ξ ( s ) = ξ ( 1 s ) ,
where ξ ( s ) is Riemann’s ξ -function, defined by:
25.4.4 ξ ( s ) = 1 2 s ( s 1 ) Γ ( 1 2 s ) π s / 2 ζ ( s ) .
22: 21.4 Graphics
§21.4 Graphics
Figure 21.4.1 provides surfaces of the scaled Riemann theta function θ ^ ( 𝐳 | 𝛀 ) , with …This Riemann matrix originates from the Riemann surface represented by the algebraic curve μ 3 λ 7 + 2 λ 3 μ = 0 ; compare §21.7(i). … For the scaled Riemann theta functions depicted in Figures 21.4.221.4.5
See accompanying text
Figure 21.4.5: The real part of a genus 3 scaled Riemann theta function: θ ^ ( x + i y , 0 , 0 | 𝛀 2 ) , 0 x 1 , 0 y 3 . … Magnify 3D Help
23: 27.4 Euler Products and Dirichlet Series
The completely multiplicative function f ( n ) = n s gives the Euler product representation of the Riemann zeta function ζ ( s ) 25.2(i)):
27.4.3 ζ ( s ) = n = 1 n s = p ( 1 p s ) 1 , s > 1 .
The Riemann zeta function is the prototype of series of the form …
27.4.5 n = 1 μ ( n ) n s = 1 ζ ( s ) , s > 1 ,
In (27.4.12) and (27.4.13) ζ ( s ) is the derivative of ζ ( s ) .
24: 20.10 Integrals
20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
Here ζ ( s ) again denotes the Riemann zeta function (§25.2). …
25: 21.5 Modular Transformations
§21.5(i) Riemann Theta Functions
Equation (21.5.4) is the modular transformation property for Riemann theta functions. The modular transformations form a group under the composition of such transformations, the modular group, which is generated by simpler transformations, for which ξ ( 𝚪 ) is determinate: …
§21.5(ii) Riemann Theta Functions with Characteristics
For explicit results in the case g = 1 , see §20.7(viii).
26: 25.8 Sums
§25.8 Sums
25.8.1 k = 2 ( ζ ( k ) 1 ) = 1 .
25.8.2 k = 0 Γ ( s + k ) ( k + 1 ) ! ( ζ ( s + k ) 1 ) = Γ ( s 1 ) , s 1 , 0 , 1 , 2 , .
25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
25.8.10 k = 1 ζ ( 2 k ) ( 2 k + 1 ) ( 2 k + 2 ) 2 2 k = 1 4 7 4 π 2 ζ ( 3 ) .
27: 26.12 Plane Partitions
Table 26.12.1: Plane partitions.
n pp ( n ) n pp ( n ) n pp ( n )
3 6 20 75278 37 903 79784
26.12.26 pp ( n ) ( ζ ( 3 ) ) 7 / 36 2 11 / 36 ( 3 π ) 1 / 2 n 25 / 36 exp ( 3 ( ζ ( 3 ) ) 1 / 3 ( 1 2 n ) 2 / 3 + ζ ( 1 ) ) ,
where ζ is the Riemann ζ -function (§25.2(i)). …
ζ ( 3 ) = 1.20205 69032 ,
ζ ( 1 ) = 0.16542 11437 .
28: 15.11 Riemann’s Differential Equation
§15.11 Riemann’s Differential Equation
§15.11(i) Equations with Three Singularities
The complete set of solutions of (15.11.1) is denoted by Riemann’s P -symbol: …
§15.11(ii) Transformation Formulas
for arbitrary λ and μ .
29: 21.8 Abelian Functions
§21.8 Abelian Functions
For every Abelian function, there is a positive integer n , such that the Abelian function can be expressed as a ratio of linear combinations of products with n factors of Riemann theta functions with characteristics that share a common period lattice. …
30: 25.12 Polylogarithms
See accompanying text
Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
See accompanying text
Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
The special case z = 1 is the Riemann zeta function: ζ ( s ) = Li s ( 1 ) . … Further properties include
25.12.12 Li s ( z ) = Γ ( 1 s ) ( ln 1 z ) s 1 + n = 0 ζ ( s n ) ( ln z ) n n ! , s 1 , 2 , 3 , , | ln z | < 2 π ,