About the Project

Riemann%20hypothesis

AdvancedHelp

(0.001 seconds)

11—20 of 165 matching pages

11: 21.10 Methods of Computation
§21.10(i) General Riemann Theta Functions
§21.10(ii) Riemann Theta Functions Associated with a Riemann Surface
  • Belokolos et al. (1994, Chapter 5) and references therein. Here the Riemann surface is represented by the action of a Schottky group on a region of the complex plane. The same representation is used in Gianni et al. (1998).

  • Tretkoff and Tretkoff (1984). Here a Hurwitz system is chosen to represent the Riemann surface.

  • Deconinck and van Hoeij (2001). Here a plane algebraic curve representation of the Riemann surface is used.

  • 12: 6.16 Mathematical Applications
    If we assume Riemann’s hypothesis that all nonreal zeros of ζ ( s ) have real part of 1 2 25.10(i)), then …
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
    13: 25.7 Integrals
    §25.7 Integrals
    For definite integrals of the Riemann zeta function see Prudnikov et al. (1986b, §2.4), Prudnikov et al. (1992a, §3.2), and Prudnikov et al. (1992b, §3.2).
    14: 21.3 Symmetry and Quasi-Periodicity
    §21.3(i) Riemann Theta Functions
    §21.3(ii) Riemann Theta Functions with Characteristics
    …For Riemann theta functions with half-period characteristics, …
    15: 25.5 Integral Representations
    §25.5 Integral Representations
    25.5.1 ζ ( s ) = 1 Γ ( s ) 0 x s 1 e x 1 d x , s > 1 .
    25.5.5 ζ ( s ) = s 0 x x 1 2 x s + 1 d x , 1 < s < 0 .
    25.5.19 ζ ( m + s ) = ( 1 ) m 1 Γ ( s ) sin ( π s ) π Γ ( m + s ) 0 ψ ( m ) ( 1 + x ) x s d x , m = 1 , 2 , 3 , .
    §25.5(iii) Contour Integrals
    16: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • G. Allasia and R. Besenghi (1989) Numerical Calculation of the Riemann Zeta Function and Generalizations by Means of the Trapezoidal Rule. In Numerical and Applied Mathematics, Part II (Paris, 1988), C. Brezinski (Ed.), IMACS Ann. Comput. Appl. Math., Vol. 1, pp. 467–472.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • J. V. Armitage (1989) The Riemann Hypothesis and the Hamiltonian of a Quantum Mechanical System. In Number Theory and Dynamical Systems (York, 1987), M. M. Dodson and J. A. G. Vickers (Eds.), London Math. Soc. Lecture Note Ser., Vol. 134, pp. 153–172.
  • 17: 27.12 Asymptotic Formulas: Primes
    π ( x ) li ( x ) changes sign infinitely often as x ; see Littlewood (1914), Bays and Hudson (2000). The Riemann hypothesis25.10(i)) is equivalent to the statement that for every x 2657 , …
    18: 21.9 Integrable Equations
    §21.9 Integrable Equations
    Typical examples of such equations are the Korteweg–de Vries equation … Furthermore, the solutions of the KP equation solve the Schottky problem: this is the question concerning conditions that a Riemann matrix needs to satisfy in order to be associated with a Riemann surface (Schottky (1903)). …
    19: 21.6 Products
    §21.6 Products
    §21.6(i) Riemann Identity
    Then …This is the Riemann identity. On using theta functions with characteristics, it becomes …
    20: 8.22 Mathematical Applications
    §8.22(ii) Riemann Zeta Function and Incomplete Riemann Zeta Function
    See Paris and Cang (1997). If ζ x ( s ) denotes the incomplete Riemann zeta function defined by …so that lim x ζ x ( s ) = ζ ( s ) , then …For further information on ζ x ( s ) , including zeros and uniform asymptotic approximations, see Kölbig (1970, 1972a) and Dunster (2006). …